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PREFACE I
This is the second Speccrum Estimation Workshop sponsored by RADC to

provide a means for key researchers in the field to describe their work and
also provide a means for compar:ing the work of various researchers using a
common data base for representative problems of importance to the Air Force.
This report is a collection of papers that were submitted for'presentation at
RADC'G Spectrum Estimation Workshop held 3, 4, and 5 October 1979 at Griffiss
Air Force. Base, NY 13441. The papers were published as received by RADC and
have not been edited. Further, publication of these papers does not represent
approval or endorsement by the Rome Air Development Center or ihe U. S. Air
Force.

Proceedings of the first workshop are available from DDC, #A054650.

Participants were also presented with a set of sample problems called
the Spectral Estimation Experiment. The object of this experiment was to
establish a basis for comparison of the wide variety of techniques available

as a function of selected appli,:ations on both real and artificial data sets
representing specialized problem classes which are of interest to the
government. The common data base offers several additional advantages.

Four problems have been formulated by the workshop committee. They fall
generally into the areas of radar, pattern recognition and system identifica-
tion. .

The detailed description of the problem and the solutions as determined
by the many different algorithms employed will be published separately.

SPECTRUM ESTIMATION WORKSHOP COMMITTEE

1. Russel Brown (RADC/OCTS)
2. Edward Christopher (RADC/OCTS)
3. Lester Gerhardt (RPI/Co-chairman)
4. Clarence Silfer (RADC/OCTS/Co-charinan)
5. Paul Van Etten (RADC/OCTS)
6. Haywood Webb (RADC/ISCP)
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AN INTRODUCTION TO THE SECOND RADC
SPECTRAL ESTIMATION WORKSHOP

LESTER A. GERHARDT

Professor and Chairman
Electrical and Systems Engineering Department

Rensselaer Polytechnic Institute
Troy, NY 12181

Introduction

As Co-Chairman of this Second RADC Spectral Estimation Workshop, it is
a honor and pleasure for me to welcone all of you to this gathering. Being
Co-Chairman of the First Workshop held last year, I have been privileged to
watch this field of Spectral Estimation as it has emerged from its newly
founded embryonic stage in the first workshop to one of increased maturity
this year. Many previously diverse approacnes and fieldshave coalesced and
common mathematical tools as well as problems identified. (This has been
further aided by other workshops such as the one scheduled for January 1980
at Arden House, Harriman, NY sponsored jointly by the IEEE and Geophysical
Society.) Still some major problems remain, such as the determination of
model order, and no single technique has been clearly identified. as being
superior. However, new techniques and algorithms are still sought, and the
current Workshop offers you some of them. It also presents new and a broader
range of application papers with concrete results. Finally, another com-
parison of methods will be made using a set of representative problems
utilizing a common data base.

It should be noted that the First Workshop was for many a jumping off
point to the field and served as a means of focusing attention to this class
of spectral estimation problems. Since that time, many of the authors have
been engaged in actively sponsored government, industrial and academic
research, hardware systems using MEM are being reduced to hardware/firmware,
and published papers have substantially increased relating to this subject
area. Moreover, there have been other publications such as the IEEE Press
publication of Modern Spectrum analysis methods, which have helped in
identifying the field as significant. The Workshop Commibtee would like to
think that our first get together aided in the increased interest shown in
the field over the last year and take this opportunity to thank you for your
involvement and contribution towards that end.

Last year, my paper included a brief mathematical development of each of
the major techniques. This year this seems unnecessary and it should be
sufficient to summarize the papers grouping some common aspects and identi-
fying emerging trends, leaving the detailed accomplishments to the authors
themselves.



Summary of Technical Papers

Twenty-one papers form the basis of the technical sessions that follow.
There are eight papers authored by personnel from university or university
related organizations, seven from industry, five from government, and. one
jointly offered from university and government. The majority of goyernment
papers originate from the Naval Research Laboratories (NRL). Compared to
last year, this represents an increase in the percentage of papers origin-
ating from industry, perhaps indicative of a trend of the spectral estimation
techniques towards practical implementation.

As one reviews the papers in detail, some major common threads or
themes appear, and some general observations emerge.

The technical content of the papers falls broadly into the two cate-
gories of theory and application, with many papers incorporating both. At
the theoretical end, the first paper by Shore and Johnson is an excellent
treatment of Cross Entropy Spectral Analysis. This approach is useful to
estimate power spectra given a priori estimates of the spectra and new infor-
mation in the form of autocorrelation function samples, and reduces to maxi-
mum entropy spectz-.J. analysis in special cases. It should help expose un-
familiar users to the effectiveness and applicability of this approach. The
next two papers are concerned with treating a limited number of discrete
time domain samples available. The paper by Kolba and Park develops an
implementation of a recursive estimation procedure by minimizing the maxi-
mum error given a limited number of time samples but with a priori knowledge
of the bandwidth and time duration of the signal (time concentrated signals);
whereas the paper by Bowling and Lai describes a linear prediction method
to interpolate and extrapolate missing data using a spectrally consistent
estimate - this done prior to spectral analysis. The latter paper considers
applications to radar for both real and simulated data. The next paper by
Marple, also is concerned with radar as the area of application, but is in
major part a theoretical treatment of a new autoregressive algorithm for
spectraJ. estimation using a least squares approach which all but eliminates
line splitting, a problem cited several times at last year's Workshop. Jim
Cadzow, one of several principle researchers in this field in recent years,
next offers an ARMA autocorrelation estimator method (AEM) for rational spectral
density estimation which permits the use of poles and zeroes yielding a more
robust procedure. Following this is the paper by Abend and Platt which ex-
tends Codzow 's method (presented at the 1978 Workshop) using an iterative
steepest descent method to invert the sometimes ill-conditioned matrix, and
treats the problem of noise and quantization.

The paper by Gordon concentrates on the topic of accuracy of spectral
estimates and particularly discusses the effects of noise. Considering a
bandlimited signal in additive white noise, Gordon analyzes the mean squared
error of the linear spectral estimate as a function of the time bandwidth

2
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product and signal to noise ratio. The next paper by Kay is also directed at
noise problems andtakes the approach of compensation of autoregressive
spectral estimates when imbedded in white noise. Kay assumes the noise
variance is known and with that compares his compensation technique with the
ARMA approach to handling noise.

The last two papers in the basic theory group are directed at the
classical problem of order determination. Kaveh and Bruzzone use Akaike's
Information Criterion (AIC) to determine the order of the autoregressive
spectral estimate, while Van Blaricum offers the eigenvalue method and the
HFTI method as means to determine the order (or alternatively rank and poles)
associated with Prony's method. This still remains a difficult and open
problem with no overall solution to the selection of optimum cutoff or to
how the effects of noise may be handled.

The next two papers are almost exclusively directed at developing a
unifying theoretical base or model, or to a comparison of techniques. The
paper by Byrne and Fitzgerald stress comparison of techniques including the
implicit models of Cadzow and Figueiredo among others and attempts to
establish that these models are related and in fact covered by their unifying
model, which serves as both a minimum energy extrapolation and least mean
square approximation of the spectrum. It serves to establish the trend of
searching for commonality in approaches. This is further enhanced by
Herring's paper which compares Burg's method with known autocorrelation
autoregressive spectral analysis in white noise.

I The two papers that follow, the first by Childers and Roucos, and the

second by Jain, both deal with 2-D spectral estimation and continue a theme
begun at the first Workshop. The first paper develops a 2-D estimation
algorithm whereas Jain's paper deals with one and two dimensional estimation.
Jain uses a minimum norm least square (MNLS) formulation and treats the
problem appropriately as iterative matrix inversive using a gradient approach.

The remaining seven papers are primarily applications oriented, although
include significant theoretical developments as well. The first three of
this set of application papers focus on the use of spatial information.
Gabriel compares MEM and MIM spectral estimation methods to their adaptive
array counterparts popular in the adaptive antenna array field, both being
recognized as a matrix inversion problem. This similarity reinforces points
made in my introductory talk last year, and serves to bring these fields
closer together. The paper by Sun and Evans is directed at multipath, and
suggests the use of aperture sampling to improve angular resolution and
tracking. It also applies the high resolution MLM and MEM methods to
spatial data. Finally, in this category, is the paper by Schmidt which
deals with multiple emitter location and again deals with a spatially distri-
buted application.

hI
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The last four applications are quite diversified and demonstrate the
increased breadth of spectral estimation. Last year for example, the
applications were almost solely radar oriented. This year aside from the
spatially distributed applications above, the paper by Haykin and Chan uses
maximum entropy estimation to function as a Doppler processor. They show
that MEM is only slightly suboptimal to conventional processors using the]
DFT for additive white noise, but for additive clutter (narrow spectral band-
width) MEM is much better for low Doppler targets. The pappr by King
discusses several applications for MESA and his prediction error filter in-
"cluding clutter reduction, signal detection, etc. Sawyers paper applies the
MEM to adaptive digital filtering directly tying these two fields, and
finally Fougere's paper deals with estimating the dominant frequencies and
polarization patterns of Lnagnetic pulsation events using both linear and
nonlinear methods which are also claimed to eliminate line splitting and

shifting.

General Comments

From the previous descriptions, it should be apparent that there con-
tinues to be new theoretical developments, as well as advances on previously
developed techniques to improve ac-curacy, reduce the effect of noise, and
yield improved computational capability. Two main problems of order deter-
mination and line splitting are addressed again this year. However, in at
least the two papers by Fougere and Marple, the line splitting problem is
fairly well resolved whereas the establishing of the model order needed
(degrees of freedom, poles, etc.) as exemplified in the papers by 1
"Van Blarcum and Kaveh remains a substantial difficulty. A mix of linear
and nonlinear techniques continue also, with no one method cited as clearly
superior. Work on extensions to two dimensional processing remains active
and of substantial interest.

1

In an effort to provide some motivation in other directions, (or stimu-
late controversy or opposition as the case may be), let me say that I feel
there is still too much emphasis on treating additive white noise exclusively.
This is exemplified in papers by Gordon, Kay, Herring among others. Noting
the substantial differences in performance of the MEM obtained in the paper
by Haykin and Chan for white noise vs. narrowband noise, certainly some work
is needed to explore the effects of non-spectrally flat noise. There also
remains a continued special concentration of mean squared error criterion
such as in Gordon, Marple, and Jain. Although very effective perhaps other
criteria warrant study

The reader should carefully observe that representation continues from
not only government, industry, and the university, but also from electrical
engineering, geophysics, etc. It is rewarding to see, nonetheless, that
se',eral papers, more than in the past year, now are strongly interrelating
the fundamental problems of spectral estimation with those of other fields,

k
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a suggestion made by myself' and others last year. For example, the papers
by Gabriel, Bowling and Lai, Abend and Platt, and Kolba and Park all cover
to one extent or another the relation between spectral estimation and
adaptive techniques, including gradient methods for iteratively inverting
a matrix etc. In many more, there is a solid appreciation of the basic
nature of' the matrix inversion problem as it dominates the f'ield of' spectral
estimation.

Insofar as applications papers are concernedi, there is an integral mix
of theory and applications, a broader diversification of applications
than before, and more co'ncrete resultz. The effectiveness of the techniques,
will best be measured in the comparison of' results on the common data sets
provided to all participants, a discussion better left to another day.

In conclusion, let me restate my welcome to the authors including those
returning for a repeat porformance and those here for the first time, and to
the general audience. I trust the forthcoming technical sessions and sub-

sequent comparative problem sessions will be as fruitf'ul. and rewarding to

you as it has been to the committae members and myself in helping to prepareI

them.
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MINIMUM CROSS-ENTROPY SPECTRAL ANALYSIS
INTRODUCTION AND EXAMPLES

JOHN E. SHORE
RODNE1i W. JOIHNSON

Naval Research Laboratory

Washington, D.C. 20375

Abstract

The principle of minimum cross entropy (minimum directed divergence) is

summarized, discussed, and applied to the classical problem of estimating
power spectra given samples of the autocorrelation functi.on. This new
approach reduces to maximum-entropy spectral analysis (MESA) in certain
special cases but, in contrast to MESA, permits use of a prior estimate of
the power spectrum. Examples of applications are given.

1. Introduction

Work reported in [1]-[2] showed that the principle of minimum
cross-entropy (minimum directed divergence) provides a correct, general
method of inductive inference in terms of continuous probability densities
when given a prior density and information about the "true" density in the
form of expected values. Subsequent work [3] showed how cross-entropy
minimization can be used to estimate power spectra when given a prior
estimate of the spectrum and new information in the form of autocorrelation
function samples. This new technique reduces to maximum entropy spectral
analysis [4]-[5] in certain special cases. In this paper we summarize the i

new technique and we give examples of its application.

2. Cross-Entropy Minimization

Let x denote a single state of some system that has a set D of possible
system states and a probability density ql(A) of states. Let 0 be the set
of all probability densities q on D such that q(x)•0O for x6D and

dx q(x) = I . (1)

We assume that the existence of qt6t is known but that qt itself is
unknown. The density qt ip sometimes known as a "true" density.

Suppose p4# is a prior density that io our current estimate of qt,
and suppose we gain new information about qt in the form ol: a set of

A.....
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expected values

Jdx q W(~g,(25) =<gr> i r '(2)

for a known set of boun.ded functions gr(X) and numbers " r, r , m.
Now, because the constrainLs (2) *-, not determine qt completely, they are
satisfied rot only by qT but by somL subset of densities% ) . Which
single density should we choose from this subset to be our new estimate of
'q, and how should we use the prior p and the new information (2) in making
this choice?

The solution to this inference problem is obtained by minimizing a

functional H(q,p) called cross-entropy,

H(q,p) J dx q(x)log(q(x)/p(x)) (3)"h

Specifically, of all the densities qi'4A that satisfy the constraints (2)9
we choose the one with the smallest cross-entropy H(q',p) with respect to
the prior p. Stated differently, the posterior density q satisfies

H(q,p) U min H(q',p) v

where tS comprises all of the densities that satisfy the constraints (2).

Mathematically, the solution is obtained using the method of Lagrangian
multipliers and standard techniques from the calculus of variations. The
minimization condition is

log(q(x)/p(x)) + I + A,•o + r rgr(x) - 0 , (4)

where the •r are Lagrangian multipliers corresponding to the constraints
(2), and where A, is a Lagrangian multiplier corresponding to the
normalization constraint (1). The solution of (4) is I

q(x) - pCx)exp(-A - Zr[rgr(x)) (5)

where A - + 1. It is convenient to write (5) in the form

q(x) - Z-Ip(x)exp(- Ir rfgr(,x)) , (6)

where Z is the "partition function",

Z a exp(A ) {dx p(x)exp(- Jr rgr(X)) (7)

The values of the multipliers Ar are determined by the known expectatior.
values Ir in (2). One can express the posterior q directly in terms of
the values gr by solving the equations

8-[.- -- -'- m ' -



r " - Z

S- Alog(Z) (8)

for the tr, or by substituting (6) into the constraint equations (2) and
solving for the Ar" Such solutions are often difficult or impossible to
obtain analytically, but one can obtain them computationally in general
[1, Appendix B], [6].

The principle of minimum cross-entropy was first proposed by Kullback
[7], who called it a principle of minimum directed divergence or minimum
discrimination information. The term cross-entropy is due to Good [8].
Crose-entropy can be characterized axiomatically [9] in terms of properties
that are desirable for an information measure [9], [10], and it can be
argued [11] that cross-entropy measures the amount of information necessary
to change a prior p into the posterior q. The principle of cross-entropy
minimization then follows intuitively. This justification is somewhat
indirect --- it is based on a formal description of what is required of an
information measure rather than on a formal description of what is required
of a method for taking new information into account.

Recently, we obtained a stonger justification [I]-[2]. Our approalh
was to formalize the requirements of inductive inference directly in terms
of four consistency axioms that make no reference to information measures or
properties of information measures. All of the axioms are based on a single
fundamental principle: If a problem can be solved in more than one way, the
results should be cc .stent. We were then able to prove that the principle
of minimum cross-en opy provides a correct, general method of inductive
inference in the following sense: Given a prior density and new information
in the form of constraints on expected values, there is only one posterior
density satisfying these constraints that can be chosen in a manner that
satisfies the axioms; this unique posterior can be obtained by minimizing
cross-entropy.

The principle of minimum cross-entropy is a generalization of the
principle of maximum entropy [12]-[13]. When the prior density is uniform,
cross-entropy minimization reduces to entropy maximization.

3. Minimum-Cross-Entopy Probability Densities for
Stochastic Signals Given Expected Spectral Powers

Consider time-domain signals of the form

s(t) U •akcs(Qkt) + bkiln(&kt) , (9)

k=1

9I
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with non-zero Ck that need not be uniformly spaced. These are
discrete-spectrum, band-limited signals without DC components. (The
assumption of no DC term, which is reasonable for many signal processing
applications, is made for mathematical convenience.) The power at each
frequency is given by the variables xk,

2 +b 2  (10)
Xk ak k

If we consider the xk to be random variables, we may describe a stochastic
signal in terms of a joint probability density q(b), where we write Z for
xlx2,...,xn. Instead of constantly referring to q(x) as the spectral
power probability density of a stochastic signal, we will informally refer
to q(x) as a "signal."

Now consider the problem of choosing qkx) when we know che expected
power Pk at each frequency

Pk - <xk> - fdx xkq(x) , (11)

where dA - dxldx2...dxn. To apply the principle of minimum

cross-entropy, we need a prior density p(L) to represent our state of
knowledge before we learn even (11). Since in any real situation there will
be a physical limit on the magitude of the Xk, we assume that the domain
of L is bounded. We may therefore use a uniform prior density. For a more
detailed analysis of this assumption, see [3].

We choose q(x) by minimizing cross-entropy subject to the constraints
(1) and (11). The result (see (5)) is

q(x) - A exp(- 2kAkxk)

where theak are the Lagrangian multipliers corresp9nding to (11), and
where the uniform prior and the Lagrangian multiplier corresponding to (1)
have been absorbed into the constant A,

A-1 dxldx2...dxn exp(-- Ik8kxk) . (12)

Provided that the Pk are much less than the maximum values of the xk, we
may use integration limits (0,0 ) in (12); this leads to A in lj '"6n '
In terms of the multiplierst~k, the powei constraints (11) become

Pk #0218"n dxkxkexp(-Pkxk)T dxmexp(-,•mxm)

I .,
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The posterior q(x) is therefore

q(x) = T(i/Pk) exp(-Xk/Pk) •(13)

k:1
Thus, q(A) is a multivariate exponential --- each spectral power xk is
exponentially distributed with mean Pk-

4. Minimum-Cross-Entropy Power Spectra Given Autocorrelation
Information and a Prior Estimate of the Power Spectrum

Let some unknown signal qt(x) have a power spectrum G(f) and
autocorrelation function R(t). Suppose we obtain information -ýbout G in the
form of a set of samples of the autocorrelation function R(tr),

Rr " R(tr) "I df G(f)exp(2?'itrf) , (14)-W
r l,...,m. We do not assume that the tr are equally spaced. If the
frequency spectrum is discrete, as we have assumed in (9), we can express
G(f) as

G(f) - ZGk S(f - f),
kz-yt

where fk - -f-kq Gk - G-k - G(fk), and GO 0. Then (14) beomc3

Rr - i Gkexp(2,nitrfk)

which we prefer to express in the non-complex form

Rr lGkcrk 9 (15)

where

Crk - 2 cos(2Wtrfk) . (16)

Since the Ck satisfy

Gk <xk) d x xkqt'(x) (17)

we can rewrite (15) as
Rr - x Xkcrk)q (x) . (18)

This has the form of known expected values of the unknoin density qt(x), and
we may therefore use the principle of minimum cross-entropy to infer an
estimate of qt . In terms of the general form (2), the functions gr are
Igr I kxkcrk. This minimum cross-entropy problem differs from the
one discussed 'n Section 3 in that the Section 3 problem assumed knowledge

,, ;
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of the expected spectral powers in the form (17), whereas in this problem we
have only the form (18). Since typically m<n, knowledge of (18) provides
less information than does (17).

Now suppose we obtain the autocorrelation information (18) when we
alr'ady have an estimate Pk of the power spectrum Gk (17). We reflect
this prior information as a prior density with the exponential form (13)

p( T(I/Pk) exp(-xk/Pk) (19)
kalI

which itself is the minimum cross-entropy density, with respect to a uniform
prior, given knowledge of the expected spectral powers Pk"

We then solve the problem of estimating Gk, given a prior estimate

Pk and new autocorrelation information (18), by assuming the prior density
(19) and minnimizing cross-entropy subject to the constraints (18) and (1).
The result is

q(x) = p(x) exp(-A - XPr ±Xkcrk) (20)
oMV kal

where ý.he Ar are m LaE'rangian multipliers corresponding to the
autocu--.relation constraints (18). For convenience, we define

M in C(21)
uk Z3rcrk

ro I
so that (20) can be written as

q(x) p(x) exp(- _ - •k Uktk)

" e-A1T(I/Pk) exp(-(uk+i/Pk)xk) • (22)

Since A's value must be such that q(x) satisfies the normalization
constraint (1), (22) becomes

Y%
q(x) - rT(uk+l/Pk) exp(-(uk+l/Pk)xk) . (23)

For our posterior estimate Qk of the power spectrum, we use the density
(23) to compute Qk =<xk) - /(uk+l/Pk), or

Q (24)

k (I/Pk) + Ir rcrk (

where the multipliers Ar are determined 'y the requirement that the Qkx
satisfy the autocorrelation constraints (15)

Rr QkCrk * (25)

Q12
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The minimum cross-entropy result (24)-(25) can also be derived by arguments
concerning the cross-entropy between the input and output of linear
filters [3].

Suppose that the prior estimates Pk are uniform (Pk = P), and

suppose that one of the autocorrelation samples, say R1 , is for zero lag
(ti - 0). Then (24) reduces to

Qk - Zrrcrk' (26)

where the constanL I/P has been absorbed into the multiplier Al since
clk = 2 holds for aLl k (see (16W). This is identical to the standard I
result for maximum entropy spectral analysis (MESA), except that the MESA
equations are usually expressed in complex form (see [5], p. 9, for i
example). Therefore, (26) is also identical to the results obtained by

autoregressive, linear predictive, and minimum least squares techniques [5],
[14]. The reduction of (24) to (26) reflects the general equivalence of
cross-entropy minimization and entropy maximization in the case of uniform
priors. When the prior spectral power estimate Pk is not uniform, MESA
and cross-entropy minimization (24) give different results. For a more

detailed comparison, see [3].

5. Examples

In this section we present some numerical examples in which
convention ' maximum-entropy spectral estimates are compared wichI
minimum-crosýs-entropy estimates that take into account prior information

about the spectrum. In each example, autocorrelations at a small number of
eq'ially spaced lags were computed from an assumed "true" spectrum; then
maximum-entropy and minimum-cross-entropy spectra were computed from the
autocorrelations and plotted.

For the first example, the original spectrum is the sum of a
"background" term, approximating 1/f noise, and a "signal" term

Scorresponding to a sinusoidal signal at a fixed frequency. The background

term is given by

G) 01/ (k - 1, ... , 50)
k 0/k

for fifty equally spaced frequencies fk = (.005, .015, ... , .495) between
0 and 0.5 (which is the Nyquist frequency: we take the spacing between
autocorrelation lags to be unity). The signal term is given by

(s) •k2 (f = .105)
±+k 0 otherwise

13 {



The sum is shown in Fig. 1; the first few corresponding autocorrelations
Rr are as follows:

tr = 0 1 2 3 4 5

Rr = 15.7511 11.6149 7.8699 4.5411 2.0145 1.1413

The maximum entropy spectrum computed from these six autocorrelatious is
shown in Fig. 2. For the minimum--cross-entropy calculation, the background
term G(b) has been used as the prior spectral estimate; the resulting
posterior is shown in Fig. 3. As one might expect, the 1/f background is
considerably better estimated in Fig. 3 thaLi in Fig. 2. More important,

however, there is a clearly discernible peak in Fig. 3 corresponding to the
sinusoidal signal at frequency .105; no such peak is evident in Fig. 2.

For the second example, spectral powers are shown at the same
frequencies as for the first, autocorrelations are computed for the same

la s, and the original spectrum is again the sum of a "background" term

0 (9) and a "signal" term G(s). In this example, the background consists
df white noise plus a peak corresponding to a sinusoid at frequency .215:

(b) 1.02 (f. .215)
+k .02 otherwiue

The signal term consists of a nearby, similar peak at frequency .165:

"(s) I i (f = .165)

+ ( 0 otherwise

The original spectrum is shown in Fig. 4, the autocorrelations are

tr= 0 1 2 3 4 5
Rr = 6.0000 1.4544 -2.7732 -3.2248 0.2032 2.6900

and the maximum-entropy spectrum is shown in Fig. 5. Fo- the
minimum-cross-entropy calculation, the background term Gkb) has again been
taken as a prior spectral estimate. The posterior estimate is shown in Fig.
6.. Tae information in the prior has permitted the resolution of the

"expected" peak at frequency .215 from the "unexpected" peak at frequency
.165. In the maximum-entropy estimate, bv contrast, the two peaks are
coalesced into a single peak at about the center frequency, .190.
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OPTIMAL ESTIMATION FOR BANDLIMITED,
T IME-CONCENTRATED S IGNALS

D.P. KOLBA AND T.W. PARKS

Department of Electrical Engineering
Rice University
Houston, Texas

Abstract

A now estimation procedure for bandlimited, time-concentrated signals
Is described. The method opt imal ly est imates des I rod measurements of an
unknown signal by minimizing a maximum error. The information available for
the estimation consists of a limited number of time samples and knowledge
about the bandwidth a-nd approximate time duration of the signal. An
example will compare the new method with existing band lIunited estimation
methods. The requirements on sampl ing rate and the effects of errors (noise)
In the data are discussed. A recursive Implementation of the estimation Is
preson ted.

Introduct Ion o!

In thie calculation of the spectrum of: a discrete time sIgnal,

X(f) r x(n) e-j2rrn (l)

problems arise when only a finite portion of the signal Is available. If
no additional informat ion is available, the spectral estimate Is computed
from a windoed version of the data [I]. If additional Information about
x(n) Is known, such as knowing x(n) Is bandlimited or bandlimited and tiie-
concentrated, then this additional knowledge should be used to give a better
spectral estimate. The additional information may be incorporated Into a
new direct estimate for the spectrum. Alternativlwy, the additional infor-
mation can be used to extrapolate the given segment of data. The transform
of this extrapolated signal is thein the desired estimate of the spectrum.

Extrapolation and spectral estimation for bancilimited signals have been
studied recently in [2-5]. A finite data segment, x(-M),x(-M+l),...,x(M),

This work was supported by NSF Grant ENG'8-09033.
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of a bandlimited signal is known. From this given information, the
extrapolation and spectral estimation are derived. In [2), the extrapolation
is shown to be the minimum energy extension of the finite data segment to
a bandlimited signal. This method will have the extrapolation as concentrat-
ed on the measurements as possible. Therefore, this method will be called
concentrated on measurements (CON) estimation. The methods of [4] and [5]

Sare equivalent to this COM estimation. The iterative method of [3] w ill
converge to the COM estimate.

The COM method concentrates the estimation on the measurement interval
regardless of where the true signal is concentrated. If the signal is known
In advance to be concentrated on an interval larger than that over which the
measurements are taken, then this additional information should be incorpor-
ated into the estimation method. In this paper, a new estimation method Is
described which Incorporates this additional information about the signal
into the solution [101. This new method will be called concentrated on the
signal (COS) estimation.

The new COS estimation method will be derived using deterministic
estimation theory. A short presentation of this theory will first be made.
Then, the COS estimation method will be derived. Next, the new COS method
will be compared to the COM method on a practical example. A new sampling
rate criterion for COS estimation will be discussed. The sensitivity of the
method to errors in the data will be determined. Finally, a recursive for-
mulation for the new estimation procedure will be presented.

Deterministic Estimation

In a deterministic estimation problem [6,71, some measurement of the
deterministic signal x Is desired. This desired measurement could be a
frequency sample, a time sample, a derivative sample, or any other measure-
ment which Is a continuous linear functional of the signal x. The informa-
tion known about x Is incomplete; therefore, the desired measurement must
be est imated from the limited knowledge about x. The estimate is made
optimal by mimniIz ing the maximum magnitude of' the error.

The limited information about x consists of' knowing x is an element
in a signal space, knowing certain measurements on x, and having a bound on
the size of" x. In more detail, the s~qnal x is known to be a member of a
Hilbert space I1 . The inner product In this space is denoted (.,.) ,
The known measurements on x are the N continuous linear functionls

(x, uk)Q -ak , k I l,2,..oN . (2)
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The bound on the size of x is given by

(x<OQ_< E2  (3)

This given informiation defines the set R of possible signals,

R = [XEHQ : (XUk)Q ak k- 1,2,...,N and (xX)< E (4)

The desired measurement on x is also a continuous linear functional
on x;

(x,u) ao (5)
0oQ 0

A value for a must be estimated from the knowledge that x r R . The
estimate, -ao, is selected to minimize rnaxja•a"50" The error in this
estimation is bounded by

E(R) = min max I " - i (6)
a0 xER 0I

In [6,71, the solution to this estimation problem is derived using

the geometry of H1. Since the bound on the size of x, (3), is a quadratic
form, the optimal]" estimate is a linear (iimbination of the data, (2). In
fact, the optimal reconstruction of the entire signal, X, is a linear com-
bination of the data. From 7, any desired measurement on x is estimated
by

(0 U '0) (7)

Tlie optimal reconstruction of x is the unique signal which is in
R and also in the subspace spanned by the I ineary independen'. measurement
signals, uk, k - 1,2,,.. N [6,71. Thus, I is a linear combinaution of the
u Is: k

k N
•b = k u k .(8

km I

Since x E R, X mutt satisfy (2):

( . •, a , . 1, 2, N. (9)

Using (8) in (9) leads to

25



N4
r bk(Uk, UQ) = - 1, 2, ... N. (10)k=l k('k' YQ

The coefficients for the expansion in (8) can now be solved for from (10).
Using matrix notation, x is

a I

where uk is a column of the measurement signals. Now, replacing x In (7)
by (11) 'ives

;°= • uk, Q] k -) k, 0 =1 ,..N(2

The optimal estimate may be calculated directly from the data, (12), or
may be calculated by taking the desired measurements on the reconstructed
signal using (7) and (1l).

The error bound of (6) Is evaluated In [7] as

E(R) { (Uo, U.)Q- , Uk, U•) (Uk, Uo)1
(13)

,.E2 . k -1 1/2 k, o,- 1, 2, ... , N.

In (13), the first term specifies the error in approximating un by a linear
combination of the uk's. The second term in (13) measures how large the set
R of possible signals Is and depends on the data.

A property of the optimal reconstruction shown in [7] is

(X, X) = AR (x, X(4)

This property will be used to formulate a new estimation procedure in which
the estimated signal Is concentrated on a known signal interval.

26
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Estimation Concentrated On The Signal

Consider the problem of reconstructing a bandlimited signal from a
finite data segment. In [2], the best reconstruction of x with this given
information has minimum energy. Since the energy of the signal on the
samples, n=-M, -M+I, ... , M Is fixed, this reconstruction also has minimum
energy tails outside the measurement interval. The reconstruction proce-
dure (COM) Is concentrated on the measurement interval. If the signal is
known to be of longer duration than from -M to M, this Information should
be used to extend the concentration beyond the measurement interval to the
larger signal interval. The new estimation method developed In this paper
(COS) is concentrated on the signal Interval.

Let B denote the bandlimiting operator so that for finite energy x(n),
y=Bx Implies ( X(f) if) : A

0 otherwise

for 0 P p < < .5. Here, Y(f) and X(f) denote the transforms of y(n) and
x(n) as given By (I). Next, let D denote the timelImiting operator so that
y=Dx implies yx(n) In' < L

0 otherwise.

The operator (I - D) will retain the tails of the signal It operates on:

(i-D)x= 0 1 nj : L

Lx(n) Inj > L.
For the COS estimation, the property of concentrating the recon-

struction of x on the signal interval can also be viewed as minimizing
the tails outside of the signal Interval. Recalling (14), leads to the
selection of an Inner product which deals with the tails outside of the
signal Interval, n - -L, -L+l, ... , L. This inner product will be denoted

C" , I-D and Is defined by

(x, y) _D x(n)y (n) . (15)
I n]>L

Using this inner product In the deterministic estimation will result in
selecting as the reconstruction that signal which fits the data and has
minimum energy tails outside of the signal interval. If L=M, COM and COS
are Identical. When L>M the methods are different.
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The space of bandlimited signals concentrated on [-L, -L+I, ... , L]
as discussed in [2] Is given by

H {x x = BDy, y has finite energy . (16)

A deterministic estimation problem can now be formulated which will give
the desired COS estimation method. The Hilbert space H from (16) with
inner product (, " given by (15) will be the known signal space.
This implies that the -gndwidth and time duration are assumed known.
Signals to be 2 estimated will have bounded energy In ths tails :

(x, X) n E The known measurements on x will be the N time samples
ag = xý ; k el, 2, ... , N . This Information specifies the unknown

k2
S~gnal as an element of the set 2

R = (xEH: (x,x) ;D ' and x(nk) ak, k - , 2, ... , N).
Theestimation problem or any desired measureement can now be solved
If x of (11) can be found. To this end, the measurement signals of (2)
with respect to (*, 0) I-D must be found. 1

From [2], a complete, orthonormal basis for H Is the set of signals

v1 (n) = v1 (n+L) i=0,l,...,2L, (17)

where Xi and v (n+L) are the elgenvalues and discrete prolate spheroidal
sequences of [t] extended to the bandpass case. For any xEH,

2L
x cly1 , (18)

where

c z e(n) V;(n). (19)
n"-2- -coi

These basis signals are also orthogonal on the signal Interval:

L
n= Yl (n) yj(n) - kia , i,j - 0,1,...,2L. (20)
Sn=-L

Using the orthonormallty of the y.s and (20) leads to

(Yip Yj I-D (1 % 1,) 6 ij , I,j = ,1 .... ,2L . (21)
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Now, define

2L1.

K(n,m) 

( 

Z2
j=O I %jYj (n) yj (m) (22)

For any XEH, (22) gives
2L 1 (n) (x(m), y(m))

(x(m), K(n,m))l _D = il- 0 (23)
j=O j

Substituting (18) in (23) yields

2L 2L

(xK(n,'))l-D j=O E 1-,j yj(n) z ci vJ)I-D (24)
j=0 i=O

Applying (2!) to (24) and simplifying gives

2L
(x, K(n, ) C1 yj(n) - x(n) (25)

From (25), the measurement functions sought are seen to be

2L
Uk (nk, Y(n) Y (26)

since the data can then be written as

x(nk) (x,uk)lD k

Now that the measurement signals have been found, the optimal recon-
struction of x can be calculated using (11). The matrix to be Inverted
has elements (uk,U•)2.D. Since ukEH,

2L(,k' u)- uk(n.)= 2L(nk ,(n ) (27)

k) t -Di VO IXi

Using (27) and (26) in (11) gives x.

Now that the optimal reconstruction of the unknown signal has been
found, any desired measurement can be estimated using (7). Two common
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estimation problems are extrapolation and spectral estimation. For
extrapolation, x_(n) is estimated as x(nn). For spectral estimatlon,X(f 0 )
is estimated as X(?O). if error bounds •rom (13) are desired for these
estimates, then the signal u0 of (5) needs to be found. For extrapolation,

u,(n) = K(n0 ,n) . (28)

The evaluation of (13) requires

(u*,u ) i-O K(no,no)

and

(U k 0U ° I-O K(n k9n.) "

For spectral estimation,

2L
U,=0 Z ---- ' T (f) 'y i(n) '(29)

where -2Tf n
o- 7 y(n) e"

n=m -l

The evaluation of (13) now requires

(o lo -O I=0 I

and

2L

(uk'UO) - I-- T (f*) yi(nk)
1=0

With this COS solution to the estimation problem, the new method can
be compared to the COM method on a practical example.

Comparison Of Methods

An application in which knowledge of signal duration Is valuable
consists of a problem in which signals of known duration have been over-
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[ lapped. Consider the signal

2000 t e400t sin 2rr4OOt t ( 0
x(t M (30)

This signal has a time duration of about 12.5 msec. and is approximately
bandlimited with a bandwidth of 500 Hz. Now, several of these signals are
overlapped and added:

x(t) - 1/2xM(t) + xI(t-.009) + 2xl(t-.0177) (31)

The components of this signal are shown in Fig. 1. From this composite
signal, information about the middle component is desired. Since the
duration of the first component is 12.5 msec. and the third component
starts at t=17.7 msec., good measurements for the second comDonent are
available in the Interval 12.5!t17.7 . With a sample spacing of 0.5 msec.,
11 measurements are made on the second component.

In the discrete time formulation, the second comporiant Is considered
as a discrete time signal centered about n=O and concentrated on n=-12,-ll,
"00,12 (corresponding to 12.5 msec. sampled every 0.5 msec.). The 11
measurements are therefore the samples at n=-5,-4,0',5. The assumed
bandwidth for the signal is =,.05 Hz and 30 Hz using normalized

frequency.

Extrapolation and spectral estimation for the COS and COM methods can
now be compared. The extrapolations for both methods are shown in Fig. 2.
The actual desired sigral is the dotted curve. Fig. 3 shows the spectral
estimates obtained using the two methods. As can be seen, the COS method
gives a better reconstruction of the signal and a correspondingly more
accurate spectrum than the COM method,.

Sampling Rate For COS Estimation

The COS estimation method deals with bandlimited, time-concentrated
signals. The class of signals with bandwidth 5 and duration T has approxi-
mately 2 0 T dimensions [2]. Therefore, approximately 2 5 T measurements
should give a good estimate of a signal in this class. This Is verified by
the error bound of (13). The first term In (13) was calculated for the COS
spectral estimation problem of Fig. 3. This term of the error bound was
evaluated at 9 frequencies between fo=.05 and fo=.3. The resulting RMS
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value Is plotted versus the number of samples used for the estimation In
Fig. 4 . The error bound has reached a small value near 2 $ T measurements.

The need for about 2 5 T measurements determines the sampling rate at
which the measurements are taken. if TM is the duration of the measurement
interval and T/ is the duration of the signal, then the 2 B TL samples must
be taken in the measurement interval. This requires a sampling period of

T

M 1
T = sec. (32)s TL 2

From (32), if the measurement interval decreases with respect to the signal
interval, the sampling rate must increase to retain 2 5 TL samples. This
increased sampling rate will cause an increase in the sensitivity of the
estimates to errors in the data measurements.

Sensitivity

The increase in sensitivity as a result of increased sampling rate
affects both estimation methods. These methods are linear; and so, the
effects of errors on the data can be treated separately. Let e be an error
signal which is added to the true signal x. Let A be the linear estimation
operator which takes the measurements on the signal and generates the
desired estimate. Then,

A(x+e) = Ax + A• (33)

The term Ae is the additional error In the estimation due to the measure-
ment errors. This can be bounded by F

JjAejj JJAil "lle~lý (34

The bound on the sensitivity-of the estimation to errors Is directly related
to IhAIl. An approximation to h{Ail for both COM and COS is given by

11AII 0.615(1-2x)IN for .1 c r . 35, (35)

where the parameter • is the normalized bandwidth of the discrete time
signal and N is the number of measurements useTm From (32), the value of
c can be calculated for the lowpass case as o=-• If N Is selected as
2 p TL and TL is held fixed, then the sensitiv Tt Increases as TM decreases.

Currently, estimation with smoothing (see[8]) is being investigated as
a means of reducing sensitivity to noise.
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Recursive Computation

F The COS estimation procedure described can be calculated without the

matrix inversion of (11) or (12). A recursive solution is possible using
Gram-Schmidt orthonormalization (with respect to (',)n) on the measurement
signals [8]. This new set of basis signals for the opimal reconstruction
subspace will be denoted w , ?,=1,2,*O*,N. These signals are derived from
'the uk, k'l,2,",N as foliows [91:

=v1

v~ U w

4,- I v
vgu" -uz (u4 WjQ w and Wot = v t, = 2,3,'" ,N (36)

The optimal reconstruction is a linear combination of these new basis
signal s:

N
x = 7, cew (37)

where

S= (x,w)Q . (38)

Since the w are linear combinations of the uk as determihed in (36), they
can be writ~en as

d u (39)

Using (39) in (38) allows the calculation of the c4, 's by

k=l dk k )Q = t ,2,*'',N . (40)

Applying (2) to (40) finally gives
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c . d* ak (41)

Thus, the c 's required in (37) are calculated from the data using the
coefficients given in (39) from (36).

For any desired measurement, the estimate is found by substituting
(37) in (7)

N

a, c = , (wz, U.)Q (42)

This estimate can be calculated recursively using

.N-i
a, cj(wý,uo)Q + CN(wN'uo)Q (43)

The first term in (43) is the estimate given the first N-i measurements. The
second term updates the estimate when the Nth data measurement Is included.

Conclusions

The application of deterministic estimation theory to signal processing
problems can lead to interesting new estimation methods. The new COS esti-
mation method described in this paper has been seen to give improved esti-
mates compared to the COM method when the signal concentration Interval is
larger than the measurement interval. The COS method concentrates the I
estimation on the signal interval as opposed to the COM method which concen-
trates the estimation on the measurement interval. Consideration of the
error bounds for the new method leads to a new criterion for the sampling
rate to be used. The sensitivity of the estimation to errors in the data
has also been presented. Finally, a recursive Implementation of the new
method has been described.c
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THE USE OF LINEAR PREDICTION FOR THE INTERPOLATION

AND EXTRAPOLATION OF MISSING DATA AND DATA GAPS

PRIOR TO SPECTRAL ANALYSIS

STEPHEN B. BOWLINGI
SHU LAI

Massachusetts Institute of TechnologyI
Lincoln Laboratory

Lexington, Massachusetts 02173

Abstract

The spectral analysis of a series of equally spaced samples of a coherent
time-stationary process becomes difficult when samples are missing or sizable

rithm can be u.,ed to fill in the missing data with estimates that are spec-
trally consistent with the data that are zbserved. Simulated and practical
radar examples demonstrate an improvement in resolution and a reduction of

sidelobe interference levels.

Problem DefinitionI

When a spectral transformation of a samplad proce--s is performed, one
must account for any samples that are missing. Assigning a value of zero to
missing data prior to Fourier transformation, for example, introduces falseI
frequencies and greatly increases sidelobe levels. Clearly, an interpolation

scheme is needed that can cope with missing data and, at the same time, will
not degrade the spectral information contained in the data that are observed.

occasional missing samples, well separated from-each other, can be
estimated with simple interpolation procedures (polynomial or parabolic fits,
spline fits, etc.). However, data may be missing in such quantity that con-
ventional interpolation is inadequate; data gaps longer than the periods of
the sinusoidal components in the data cannot be easily bridged with simple
functions. A more sophisticated approach becomes necessary, and the use of a
data-adaptive linear prediction filter is one feasible alternative.

in radar data processing, missing data or data gaps may occur for a
F variety of reasons:
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(a) hardware fails to transmit pulses or receive echoes properly;

(b) radar transmits when it should be receiving echoes (range

eclipsing);

(C) resources are saturated by many targets that must be watched
simultaneously (panic);

(d) burst waveforms are purposely silent between bursts;

(e) poor signal-to-noise makes detections sporadically unreliable.

In any case, the missing samples (in these examples, complex samples with

amplitude and phase) must be filled in before Doppler processing can be
accomplished.

Description of the Method

The use of a linear prediction filter to extend a finite complex data set

before Fourier transformation was first proposed and described by Bowling
(1977). Applying this original algorithm, Tonlinson and Ackerson (1978)
demonstrated clutter and sidelobe reduction in the Doppler processing of a
train of radar pulses.

In the application of interest here, the prediction algorithm is used to
predict estimates of missing data by extrapolating from observed data. For
example, suppose an observation interval contains randomly missing samples and
gaps. The procedure is as follows:

(1) Locate and designate the missing samples to be, estimated.

(2) Find the longest continuous span of data within which
there are no missing samples.

(3) Calculate an N-point linear prediction filter from the
longest continuous span of data found in step (2).

(4) Calculate an estimate of each missing sample immediately
to the left and to the right of the longest continuous
span of data (a total of two estimates, one on each side).

(5) Return to step (2) until all missing data have been esti-
mated. (Note that estimates from step (4) are to be treated
as observations on an equal basis with the original data.
That is, the "longest continuous span of data" is increasing
in length as estimates fill in the holes, one by one, to
the left and to the right.)
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When the longest continuous span of data finally terminates at one of the
endpoints of the observation interval, estimates continue to be made toward
the other endpoint until all missing points have been filled in. The length
of the prediction filter may remain a constant, or vary according to the
current length of the longest span of data.

Simulated Examples

A simple example shows the improvement in the power spectrum of a data
set containing missing samples and gaps.

The real and complex parts of a sampled sum of sinusoids are shown in
Figs. l(a,b). No noise has been added and no samples are missing. Figure l(c)
is the true power spectrum calculated with a standard FFT with no weighting.

Now if samples are randomly zeroed out and data gaps are introduced as
shown in Figs. 2(a,b), the power spectrum in Fig. 2(c) shows increased side-
lobe levels and false frequencies, both caused by processing without estima-
ting the missing data.

Figures 3(a,b) show the data set after the linear prediction algorithm is

applied, with the power spectrum shown in Fig. 3(c). Not only do Figs. l(a,b)
overlay with 3(a,b) almost exactly, but their respective power spectra are
indistinguishable.

Another simple example demonstrates the performance of the linear pre- A

diction algorithm when data gaps occur periodically, such as is the case for
a radar burst waveform.

Figures 4(a,b) represent the process of Figs. l(a,b) for which three data
gaps are present. Indeed, half of the data are missing from the observation
interval, and the gaps are longer than any period exhibited in the data. The
power spectrum of Fig. 4(c) is a very poor estimate of the true spectrum
(Fig. l(c)) because no gaps have been filled in. Transforming only one of
the short spans of observed data gives a power spectrum with limited reso-
lution, as shown in Fig. 4(d).

However, upon using the prediction algorithm on Figs. 4(a,b), we obtain
Figs. 5(a,b) and the power spectrum in Fig. 5(c), which is a good estimate
of the true spectrum.

In this case, the prediction algorithm has acted as a synergistic device
that, by linking short pieces of data together with, spectrally consistent
estimates, allows a spectral transform to be performed over an effectiyely
longer piece of data. The whole, then, has more resolving power than any of
its parts.
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It should be pointed out that the data gaps need not be periodic orI

equal in length in order for the prediction algorithm to fill them in.

RaarExampleI
Radar is of-ten used to identify targets from the time history of the

velocity spectrum of the target's motion about its center of mass. A series

or burst of radar pulses is Fourier analyzed, and the target's velocity spec-
trum is observed. If not accounted for in the processing, missing pulses can
introduce false velocity components and lead to an incorrect characterization
or classification of the target.

For example, Fig. 6(a) shows the evolution of the velocity spectrum of
a tumbling object for which missing data and data gaps exist and are set to
zero in the radar pulse train. No estimation for the missing pulses has been
done. It is therefore not clear if the velocities indicated are actually
from the target or are an artifact of the missing data. Figure 6(b) shows the
evolution of the same velocity spectrum upon using the prediction algorithm
clfoeansouprter setralsfrhaisorand inedicapaates whichofth velocityiopnetectal
blefore Furite setransformtioran. Thedisappearanichfsmeo h velocitiespnet ctal
characterize the target.

Limitations of the Method

Implicit in the use of a linear prediction filter is the assumption that .
the date from which the filter is derived are time-stationary. The process
being sampled must be coherent during the observation interval which is being

analyzed and within which the missing data and data gaps may occur.

Also, the prediction filter works best when the spectral components are I
approximately pure tones, confined to locally narrow bandwidths spaced within
the Nyquist bounds of the spectral transform domain.

Summary

This paper proposes the use of a linear prediction algorithm to fill in
missing data and data gaps that may occur within an observation interval over
itreecwhich asetarnfre arifcs tof thmae. milssin samplnes, candb suppessed
itreecwhich ar spcrlarnfrmtifcs tof bemae. Falsen freqenes, candb sidpesobed
or eliminated by replacing the missing samples with estimates that are spec-
trally consistent with neighboring observed data. Large gaps can be smoothly
bridged that otherwise could not be satisfactorily interpolated by simpler

Computer programs which accomplish the interpolation and extrapolation
procedures for complex data can be found in Ref. [3].
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A NEW AUTOREGRESSIVE SPECTRUM ANALYSIS ALGORITHM

Larry Marple

Advent Systems , Inc.
355 Ravendale Drive

Mountain View, CA 94043

Abstract

A new recursive algorithm for autoregressive (AR) spectral estimation is
introduced, based on the least squares solution for the AR parameters using
forward and backward linear prediction. The algorithm has computational com-
plexity proportional to the order of the process squared, comparable to that of
the popular Burg algorithm. The computational efficiency is obtained by ex-
ploiting the structure of the least squares normal matrix equation, which may
be decomposed into products of Toeplitz matrices. AR spectra generated by the
new algorithm have improved performance over AR spectra generated by the Burg
algorithm. These improvements include less bias in the frequency estimate of
spectral components, reduced variance in frequency over an ensemble of spectra,
and absence of observed spectral line splitting.

Introduction

Autoregressive spectrum analysis, sometimes termed maximum entropy spec-
trum analysis (MESA), has become a popular alternative to the periodogram as an
estimate of the power spectral density (PSD) for a sampled process. For signal
to noise ratios (SNRs) greater than 0 dB, the AR PSD estimate has higher fre-
quency resolution than that of the conventional periodogram estimate (1]. AR
spectral estimates also do not have the distortion produced by sidelobe leakage
effects that are inherent in the periodogram approach to spectrum analysis.
These are two of several attractive features of AR psectral estimation that
have created interest in this technique.

The means used to estimate the autoxegressive model parameters is the key
to the performance of the AR technique. If M+l lags of the autocorrelation
function for a process are known, the M autoregressive parameters are obtained

by solving the Yule-Walker normal equations using the Levinson recursion algo-
rithm [2]. 2 The algorithm requires a number of computati.onal operations propor-
"tional to M

A host of techniq -s are available for estimating the AR parameters from
data samples. The most obvious approach is to first make estimates of the
autocorrelation lags with the available data, and then to apply the usual
Levinson recursion with the estimated lags. This approach is rarely used
primarily due to the fact that better resolution may be obtained with other
estimation methods that obtain the AR parameters directly from the data. If
unbiased autocorrelation estimates are used, one may also run into numerical
ill-conditioning during the solution of the normal equations. Biased auto-
correlation estimates reduce the risk of ill-conditioning, but at the expense
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of a degradation of the AR spectral resolution and a shifting of spectral peaks
from their true locations [1]. The shift effect is termed a frequency estimat-
tion bias. Another reason that has made this a seldom used technique is the
problem of spectral line splitting. Spectral line splitting is the occurrence
of two or more closely-spaced peaks in an AR spectral estimate when only one
spectral peak should be present. The reasons for spectral line splitting in
the Yule-Walker technique has been documented by Kay and Marple [3].

The most popular approach for AR parameter estimation is the Burg algo-

rithm [4,5]. This algorithm utilizes a constrained least squares estimation
procedure to obtain the M autoregressive parameter estimates from N data sam-
ples. The constraint requires the AR parameter estimates to satisfy the Levin-
son recursion. The Burg algorithm requires computational operations propor-
tional to the product NM.

AR spectral estimates based on the Burg algorithm suffer from two of the I
same problems observed in Yule-Walker estimates of the AR spectrum. The prob-
lem of spectral line splitting in AR spectra produced by the Burg algorithm
was first documented by Fougere et.al. (62. They noted that spectral line I
splitting was most likely to occur when: (1) the SNR is high, (2) the initial
phase of sinusoidal components is some odd multiple of 450, (3) the time dura-
tion of the data sequence is such that sinusoidal components have an odd number i
of quarter cycles, and (4) the number of AR parameters estimated is a large
percentage of the number of data values used for the estimation. Many spurious
spectral peaks often accompany spectra that exhibit line splitting.

The connection between line splitting and the number of AR parameters est-
imated (model order) highlights a problem area common to all methods of AR I
spectrum analysis -- how to select the AR model order. Akaike [7) has sugges-
ted two popular criteria for order determination. However, this author's ex-
perience has shown that most order selection rules, including Akaike's, are not
enough to be effeutive against the line splitting phenomenom.

A second major problem area with the Burg algorithm, as with the Yule- I
Wal]ker case, is the bias in the positioning of spectral peaks with respect to

the true frequency location of those peaks. If one defines the foldover fre-
quency as f =l/24t , where At is the sample rate, then it has been observed,s

in real-valued data that spectral peaks with fractional frequencies from 0 to
.5f tend to be biased higher in frequency than their actual values. Those
peaKs with fractional frequencies from .5f to 1.0f tend to be biased lowers

in frequency than their actual values. Swingler [81 has shown that the bias
can pull the peak off frequency by as much as 16% of a resolution cell when
using the Burg algorithm.

In order to alleviate the spectral line splitting problem, Fougere [9]
devised a rather complicated gradient descent algorithm for AR parameter esti-
mation. The algorithm has been shown to work for selected one and two sinusoid
examples, but it is an iterative procedure that requires a much higher compu-
tational effort than the popular Burg algorithm.

This paper presents a new algorithm for AR parameter estimation that
yields AR spectra with no apparent line splitting and reduced spectral peak
frequency estimation biases. A set of sensitive stopping rules for order se-

L lection has been found for the algorithm. The method is based on an uncon-
strained least squares estimation of the AR parameters first proposed by Ulrych
and Clayton [101, who termed it the least squares (LS) AR spectral estimate.
In their experiments with the LS estimate, they observed, for processes with
one and two sinusoids in noise, that LS generated spectra had less variation of

L
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the spectral peaks from their actual frequncies as a function of initial phase
than Burg algorithm spectra. Nuttall [111 compared the LS spectral estimate
(which he termed the forward and backward prediction method) to other AR spec-
tral estimates, including the Burg estimate, for a large ensemble of sampled
AR processes. He found the LS estimate to be as good as, and often better
than, the other estimators. in Zact, among all AR estimation techniques exam-
ined by Nuttall, the LS method exhibited the least variation in frequency.

A straightforward matrix solution of the linear simultaneous normal equa-
tions for the LS method of AR parameter estimation has been the usual computa-
tional approqch. This requires a number of computational operations propor-
tional to NM , making it computationally unattractive relative to the more
efficient Burg algorithm. This paper presents an algorithm for solution of
the LS equations with a computational co*exity proportional to NM, making it
comparable to that of the Burg algorithm.

Burg Algorithm Estimate of the AR Spectrum

The popular approach for AR parameter estimation with data samples was
introduced by John Burg in 1968. The Burg algorithm may be viewed as a con-
strained least squares estimation procedure. Assuming an all-pole stationary
stochastic process, the forward linear prediction error is give by

M M
fM,t = Xt+M +ŽaM,kXt+M-k = aM,kXt+M-k (1)

k=l k=0

for 16,t!ý N-M and the backward linear prediction error is given by

M M

b x + ?ax = SaxM,t = t E M,k t+k Z M,kxt+k (2)
k=l k=0

also for i: t'N-M. Note that complex-valued data is assumed, a 0 is defined
as unity, the aM,k are the AR parameters at order M, and the xt are the data
samples.

To obtain estimates of the AR parameters, Burg minimized the sum of the
forward and backward prediction error energies,

N-M N-M

eM = fM,tf,t + bM,tbM (3)
M M ~ M M,tt~l t=l

subject to the constraint that thu AR parameters satisfy the Levinson recursion

V. *

aM,k a M-l,k + aM,M aM-i,M-k (4)

for all orders from 1 to M. This constraint was motivated by Burg's desire to
have a stable AR filter (poles within the unit circle). Figure 1 is a flow-
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chart of the Burg algorithm, based on a modification by Anderson [12] of the
original Burg algorithm. A computational complexity analysis2of the modified
Burg algorithm indicates that 3NM-K -2N-M complex adds, 3NM-M -N+3M complex
multiplications, and M real divisions are required. Storage of 3N+M+2 complex
words is also required.

Marple Least Squares Algorithm Estimate of the AR Spectrum

A recursive algorithm has been found by this author [13] for the exact
least squares solution of the AR parameter estimates using forward and
backward linear prediction. The algorithm flowchart is shown in Figure 2, al-
though no proof is provided here.

To obtain the M normal equations for the LS algorithm, substitute (1) and
(2) into (3) and determine the minimum of P by setting the derivatives of eM
with respect to a21 the AR parameters aM, trough aMM to zero. This yields

Be e M

Z2 ZaM, jrM(ij) 0 (5).V •)aM, ij=0

for i=l,... where aMO = 1 by definition, and

N-M

rM(ij) =k= (k+M-j k+M-i + Xk+i k+j (6)

for 0!ý-i,j-• M. The minimum prediction error energy may be determined to be

M

e= ZaMjrM(0,j) (7)j=0

Expressions (5) and (7) can be combined into a single (M+l) by (M+1) matrix
expression

RMAM EM (8)

where

"1 e
aM, 0M

r 0,,) . .•.° rM(OM)
•! AM ,EM RM.

AMO . rE *MM 9

SaM, 0

Ulrych and Clayton [10] were the first to propose the least squares relation-
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ship (5) for AR parameter estimation, in which the Levinson recursion. constraint
has been removed. They found the LS estimates by computing the r (i,j) terms |
directly and then by sol ing (8) for vector A by matrix inversion. This re-

quires on the order of M computational opera~ions, which places ýt at a corn- ]
putational disadvantage with respect to the Burg algorithm with M operations.

Expression (9), though, has a structure that can be exploited to generate
an algorithm of order M operations. Although the details are not presented
here, the algorithm was motivated by a similar algorithm developed by Morf et.
al. [14]. Examination~of R will show that this matrix has both hermitian
sqmmetry [ r (i,j) = rM(j,iT I and hermitian persymmetry ( r M(i,j) =
r M(M-i,M-j) ]. It is not Toeplitz, although it may be decomposed into a func-
tion of the Toeplitz matrix TM

RM (TM) TM + (T
MM M '(0

where

XM+l xM • x

xM+2 xM+1 x2

TM x 2M+l X2 M . xM1  (11)

X N X N-1 " " N-M

with TV denoting the conjugated and reversed matrix
M

xI ... XM+l I
T - (12)
M ,NM N

and N denoting the complex conjugate transpose operation. Thus, R, has a
structure composed of the sum of two products of Toeplitz data matrices. It
is this underlying structure that allows a recursive algorithm of order M
operations to be generated.

The LS algorithm requires NM+8M 2+N+7M-8 complex additions, NM+9M 2+N+25M
-3 complex multiplications, and 16M-4 real divisions. The LS algorithm
needs N+4M+15 complex-valued computer memory locations. As a typical case,

Sconsider N=100 samples from an M=30 order AR process. The total number of

multiplications, adds, divisions, and storage locations for the Burg algorithm
are 8181, 8059, 30, and 335 respectively. For the LS algorithm, the numbers
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are 11947, 10402, 476, and 235, which is quite comparable to that required for
the Burg algorithm.

Appendix A contains a FORTRAN subroutine for computation of the AR para-
meters via the LS algorithm. The computer version of the algorithm contains
several simple checks for both numerical ill-conditioning and order selection
indication. The key terms that are performance indicators of the algorithm
are the error energy e and a divisor term called DENOM(M), which is the only
divide term in the who~e algorithm. Changes in these have been empirically
found to be sensitive indicators of proper order selection when using the LS
algoritmn.

Performance of the LS Alaorithm

A distinct difference in performance between the LS and Burg algorithms is
illustrated by the spectra in Figure 3. A 4 1-point sample sequence was gener-
ated, consisting of three sinusoidal components at fractional frequencies of
.3155f, .5155f , and .7655f . All sinusoids had initial phases of 450. A
gaussian white noise sequence was generated and the sinusoid amplitudes were
selected to yield SNRs of 43 dB, 37 dB, and 37 dB respectively. The frequen-cies, initial phases, SNRs, and data segment length of 41 samples were selected

based on conditions established by Fougere [61 as being the most likely to pro-
duce spectral line splitting.

Using the Final Prediction Error (FPE) criterion of Akaike [7] as the rule
for order selection, the minimum FPE of the 41-point sequence with tne Burg
algorithm was found at order 23. The AR spectrum based on the 23 AR parameters
estimated by the Burg algorithm is shown in Figure 3a. Extreme line splitting
occurs at each of the three peaks of interest. In addition, many spurious low
level peaks axe apparent in the spectrum. This illustrates the erroneous re-
sults that may occur when an improper order for the AR estimate is selected.
Using the same sample sequence, the LS algorithm selected order 7, based on
the rules of order selection discussed in Appendix A. The AR spectrum of the
LS-algorithm-estimated AR parameters is shown in Figure 3L. The spectrum has
three sharp peaks at the correct frequencies with no spectral line splitting.
For comparison, an AR spectrum using the Burg Algorithm for order 7 is shown
in Figure 3c. There is no apparent line splitting, illustrating the necessity
for proper order selection. Comparing the spectra of Figures 3b and 3c, it
may be seen that the skirts for each spectral peak are more narrow for the LS
spectrum than for the Durg spectrum. This shows that the poles have moved

closer to the unit circle with the LS approach than with the Burg approach.
Ulrych and Clayton [10] have examined the sensitivity of the Burg and LS

spectra to the initial phase of processes consisting of one or two sinusoids
in noise. They found that the LS estimate is fairly insensitive to the initial
phase and yields an accurate determination of the sinusoid frequency, whereas
the Burg estimate had severe variance in the frequency location of the spectral
peak as a function of initial phase.

Nuttall [11] has examined the performance of the LS approach for a non-
sinusoidal process. He generated real-valued sequences from the fourth order

AR process

4

a x + w (13)

n=l
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where a1=2.7607, a =-3.8106, a 3=2.6535, and a 4=-0.9238. White gaussian noise
w k was added to tL process to yield a 10 dB SNR. One hundred Burg and LS
spectra were generated from independent 40-sample sequences of this AR process
in steady state. Figures 4a and 4b show the overlapped spectra for the two
algorithms, while Figures 4c and 4d indicate the average of all 100 spectra for
each algorithm compared to the true AR spectrum. The model order was preselec-
ted at M=4. One observation that can be made is that the LS technique tends to
have less variability in the skirts, but more spiky estimates near the peaks
of the spectrum, than seen in Burg algorithm spectra. That is, the LS algo-
rithm produces AR spectra with less frequency variability, but more power
spectral density variability. The greater PSD variability can be attributed
to the fact that, unlike the Burg algorithm, the LS algorithm does not restrict
the poles from moving close to the unit circle. Since the area under the
spectral density curve, rather than the peak height, is proportional to power.
the variability in PSD amplitude is not of much concern. Rather, to obtain
unbiased, accurate estimates of the spectral peak frequencies is more important
for most applications.

No cases of spectral line splitting have been observed using the order
selection criteria given in Appendix A. In practice, then, the LS algorithm
appears to yield AR parameters that produce stable spectra, even when pole
estimates fall outside the unit circle (less than 1% of the time).

Summary

A new recursive algorithm that provides AR parameters for an AR spectral
estimate based on forward and backward linear prediction has been introduced.
It has the same order of computational complexity as the popular Burg algorithm.
Examples have been provided to illustrate the improved performance of spectra
generated with the LS algorithm when compared to spectra generated with the
Burg algorithm. Improvements include reduced se:,sitivity to initial phase,
reduced bias in the frequency estimate, less frequency variability over an
ensemble of spectra made from the same process, and absence of spectral line
splitting. All these factors suggest that the LS algorithm is an attractive
alternative to the Burg algorithm for AR spectral estimation.
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Appendix A

Figure 5 is a FORTRAN subroutine listing for implementation of the LS

algorithm with complex-valued data. The subroutine is dimensioned to accept

512 data values and is fixed to compute a maximum of 50 AR parameters. Note

that arrays C and D must be dimensioned by one more than the number of maximum

AR coefficients.

The following input parameters are passed to the subroutine:

X = Array of complex-valued data samples

N = Number of data samples in array X

MMAX = Maximum number of AR parameters to be estimated

TOL = Tolerance value for two of the stopping criteria. Empiricnlly

set to 10-3 for minicomputer implementation and to 10-4 for

large scale computer implementation.

The following output parameters are passed from the subroutine:

M = Number of AR parameters computed when a stopping criteria was

satisfied; note that M, MMAX.

A = Array of complex-valued AR parameters

P = Prediction error energy (eM in text)

ENERGY = Twice the total signal energy in the data samples (Eq.101)

STATUS = Integer indicating stopping criteria that terminated the

recursion at order M.

Five values of STATUS are possible. STATUS=I is the normal program exit

when the maximum order is reached, M = MMAX. STATUS=2 indicates the program

terminated when e /ENERGY< TOL, that is, the residual prediction error energy
M

is a small fraction of the total signal energy. STATUS=3 indicates the pro-

gram terminated when (e - e )/eM< TOL, that is, the residual prediction
M-1 M M-1

error energy at order M has changed by only a small fraction from the pre-

vious order M-1. This is the stopping criteria encountered most frequently. K
STATUS=4 occurs when e SO, indicating numerical ill-conditioning or possibly

a singular matrix., This was the stopping criteria encountered in Figure 4b

fcr M=8. As a result of this condition, the order M=7 was selected for valid

AR parameter estimates. STATUS=5 indicates the algorithm terminated when

7 )NOM(M) $0. This is also an indicator of numerical ill-conditioning within

the algorithm, since DENOM must be positive-valued.
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FIGURE 2. Marple Least Squares Forward arnd Backward Linear Prediction Algorithm.
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FIGURE 4. Continued...
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FIGURE 5. FORTRAN Program of LS Algorithm.

SUBROUTINE LSTSQS (N,M,MMAX,X,A,P,TOL,STATUS,ENERGY)
COMPLEX A(50)v , (512)
COMPLEX C(5i),Dr0(5),CORR( 50),9Ez F HS UV
CrJMFLEX SAVEi SAVE2,DELTA,Ci, CM,3,lCZ,C5 ,C6

INTEGER STATUSCI
CC INITIALIZATION SECTICI' (OTF1 ORDER)

DO 10 I=1 N
10 EN~RGY=ýNEPGY+CABSCX(fl))*WZ

ENýRGY=2* -*ENERGY
P=E NERGY
E=X (1)
F=C ONJG(X (N))
H=(COW4JG(X(1))4 COt'\JG(X(N)))/ENEPC-Y
S= C X(N)*CONJG (>(1) ))/Et\E 0'GY
V=(CONJGCXC1))*CON4JG(X(1)))/ENEPG',Y
U=CX(N)*Y(N))/ENEf;GYI
G=CA9S(X( 1)) ' 2/ ENEPGY
R=C9S (X (N)) 2/E*N:RGY
CCI)=CCNJG(X(I))/ENEPGY
0C1)=X (N) /ENERGY

C M=O
C TIP='-SwIFTEC- VAFIA9iLFS UPEATE
C
1000 POLC=PI

I F (DENON .*NE . 0 ) GO TO 2 0
STA TUS=5
RET URN

20 C1=H*E*CONJG(F)
R1=2.*REAL(C1 )

ALPHA1t. /(i. + PZ/(DE NOMNP)
P=ALPHA* I
Ci= (E* (I .-R) 4F4CONJG (H) )/DENOM
C2= (F (i .- G) +H*E )/DENOM
C3= (H*S+ V4 (I.-R) )/DENOK
C4= (V*CONJG(H) +3E Cl.-G) )/CENOM
C5= (H*U+S*(i. -R) ) /DENCM
CE=. (S*CONJG(H) 4Ul$ (I .-G) )/1DENOA
IF CM .ED* 0) GO TO 40
00 30 1=iq,M

30 A (1) =ALPHA* (A( I )+CI*C (11)+C 2*D Ii))
40D MZ=M/2+i

00 50 I=i,M2
MI=M+2-I
SAVE 1=Cr-NJG ( C( 1))
S AEZ=CONJGC( D( (I
C (I) =C (CJJ4C3 *CCNJG(C (MI) ) +C4*CCNJG (D (tI)
S(1) =D (I) +C5 4CCI\JG (C(MlI) ) +C ECCNJG (v(MI)

C (MI) =C (MI ) I-C3 4AVEI14C*.SAV E2
O DER(MT)=D(MI),C5*SAVE14C64SAVE2

50 CONTINUE
C ORDERUPDATE
C M=M+i

D)ELTA=(D. 0.)
Ic (M *EQ. 1) GO TO 70
00 a0 jj=2,m

CORRJfil) =CORP (J) -. X(N-J+1)CONJG(X(M-4i1)2-)(M)*C0NJG(X(J))
60 DEL~IA=DELTA+CORR(J+t)'A (J)

=70 C1=(9.9c.)
NW N-M

KDO fO K=lNM TJSPG SBS ULT UrIAA
130 rI=Cl+X(K+M)4CCNJG(X(K))

65 ()p DOY II5HED TO LD1O
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DELTIA'-ELTA+CORR (1)
C1= £ELTA/P
A (M)=-Ci
HO4LE=P
P=HCL 0-C ABS (DELT A) 112/HOLD
IF ( M o.EO Go) GO TO 100
M 2= M/2
00 911 1=102

MI=M-I
SAVE1=CONJG (A( I))
A (I)=A (1)-Cl 4CCNJG(A (MI))
IF (I .EQ. MI) CC TO 90
A (MI) = A(MI) -Cl S A VEi

90 CONTINUE
C
C PREDICTION COEFFICIENTS UPDATE
C
IUD E=X(M+1)

F=rONJG (X (N-HM)
00 110 I=iM
MI=M+1-I

ilo F=F+CONJG(X(N-M.I1))*A(I)
C
C AUXILIARY VARIAELES Ci;CER LFCATE

Ct=CONJG (E) /P
C2=CONJG (F)/P
DO 120 II=i,M

C (Il)C( I) +Cl4 A( )
120 0 tIl)=D)(I),.CZ*A1l)

D(1 )=C2
C SCALARS UPDATE

CI=H*S*CONJG (V)
C?=U*H*CONJG (S)
R1=2. *REAL (CI)
RZ=2.*REAL (C?2)
R2=(I.-G)*CASS(U)**2+(1.-R)*GA3S(S)*,24R2
G=G+(Rl/0ENOM)+(CA8S(E)4 '*2/P)
R=R+(R2/GE1IO?'~)+(CAES(F)~4 2/P)

H= ( 0. , 0.o )

141=M4-1
00 130 I=I,101 M1+ 4C

V=V+CONJG( (1) )#C (I)
130 U=U+Y(N+I-I) *D(I)
C
C CHECK FOR STOPPING C91TERIA
C

IF (P .GT, 0) GO TO 2011
'TA TUS=4
RETURN

200 IF (U(POLO-P)/POLD) .GT. TOL) GO TO 210
STA TUS=3
RET URN

210 IF ((P/ENERGY) .GT. TOL) GO TC 220
STA~TUS=2
SE TURN

220 IF (M .NE. MMAX) GC 10 1000
STATUS=l

TE UR N
END
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ARMA SPECTRAL ESTIMATION: AN iTERATIVE PROCEDURE

James A. Cadzow

Department of Electrical Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

(703) 961-5694

ABSTRACT

An ARIA Autocorrelation Estimation Method (AEM) for generating the
best rational spectral estimate of a stationary random discrete-time series
is presented. This estimation is to be based on N contiguous observations
of the infinite length time-series. As in the maximum entropy method, the
AEM in effect extrapolates an autocorrelation estimate beyond the data
limited range with the explicit objective of achieving improved spectral
resolution. Unlike the maximum entropy method, however, the AEM spectral
estimator provides for the existence of zeroes as well as poles in the re-

sultant power spectral density and it is thereby more robust in nature.
Furthermore, this method does not require an excessively large number of
observations to be effective, a property not shared by most other rational
ARMA spectrum estimators.

This work was supported in part by the Signal Processing Section,

Surveillance Technology Branch, Rome Air Development Center through the
Post Doctoral Program under Contract F30602-75-0018.
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I. INTRODUCTION

In a variety of applications, it is desired to identify the spec-
tral characteristics of a wide-sense stationary discrete-time process
{x(n)1. The elements of this random process may arise naturally through a
discrete-time phenomenon, or, by means of uniformly sampling a wide-sense
stationary continuous-time process. Whatever the case, the processes'
spectral characterization is completely determined by its corresponding
autocorrelation sequence

r x(n) = E{x(k) x(k + n)} n=O, ±1, ±2, ... (1)

in which E denotes the expected value operator. The z-transform of this
sequence is commonly referred to as the "power spectral density" associated
with the process and is specified by

c-n

S x(z) E= r x(n)zn (2)
n=-oo

where z is a complex valued variable. In the spectral estimation literature,
one commonly replaces the z variable by eJw to obtain the equivalent Fourier

transform characterization as denoted by Sx(eJ 0 ). With this Fourier repre-
sentation, one is able to express the spectral characterization as a func-
tion of the real frequency variable w.

Although relationship (2) yields an explicit procedure for deter-
mining the power spectral density, its utilization is restricted to those

few situations in which one has access to the entire time history of the
autocorrelation sequence. In most practical applications, one has little
if any such a priori knowledge. More typically, there is available only a
set of N contiguous observations

x(1), x(2), ... , x(N) (3)

of the infinite length process upon which to base a spectral estimation.

This inability to observe a random process over all time reflects real

world constraints which prevail in most any application. The problem of

concern here is then that of using this "incomplete" set of observations

to estimate the underlying power spectral density. In essence we seek to

use the finite data (3) to construct a function fx(z) which best approxi-
mates S (z) is some fashion.

The classical spectral estimation approach is to use the N process
observations to compute autocorrelation estimates (i.e., rx(n) for n=O,

±N-l), and, then to take a discrete Fourier transform of a weighted

version of these autocorrelation estimates (e.g., see ref. [1]). This

procedure often leads to unsatisfactory results, however, since the generally

erroneous assumption therein being made is that the autocorrelation
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sequence is identically zero outside the data limited range ml j N-i.
This shortcoming has been recognized by investigators and a number of al-
ternative methods that do not impose this restrictive assumption have
since been developed. By in large, these methods seek to approximate the
spectral density by a rational function. A rational model can be justi-
fied on the basis that any continuous power spectral density can be approxi-
mated arbitrarily closely by a rational function of sufficiently high
order [2].

Undoubtably, the most widely used of these models is the "all-pole" *
rational spectral estimator which has given rise to the basically equiva-
lent maximum entropy, linear predictive coding, and, autoregressive methods.
In each case, one seeks to determine the coefficients of an all-pole model
so as to optimize a given criteria. In the maximum entropy method, one
selects the "optimum" model to be consistent with the given data observa-
tions while being simultaneously least committal about the remaining unob-
served portion of the random process [31. On the other hand, the linear
predictive coding and autoregressive methods seek a data dependent whitening
filter in the guise of a one-step predictor [4]1. In each of these three
methods, the coefficients characterizing the optimum all-pole model are
obtained by solving a system of linear equations. This ease of model genera-
tion, and, the fact that all-pole models can often yield excellent spectralI
resolution performance for short data lengths are the primary reasons for
the wide acceptance of all-pole spectral estimators. It must be mentioned,
however, that these all-pole methods also have serious shortcomings. For
example, if the underlying power spectral density is rational and contains

zeroes as well as poles, an all-pole model can result in very poor estimates.

Conceptually, a better behaved spectral estimator would result ifI
the rational spectrum model being used had zeroes as well as poles. In
recognition of this fact, a variety of such models have been generated which
typically use a whitening filter approach (e.g., see refs. [5] and [6]).
These procedures have produced impressive performance when the number of
data observations, N, adequately exceeds the random processes' time constant.
When this is not the case, however, their spectral estimation performance
falls off significantly. In order to retain the inherent advantages of
using a zero-pole model while not requiring an excessively large number of
data observations, a procedure which makes explicit use of the autocorrela-
tion sequence will be now developed.

II. RATIONAL SPECTRUM MODEL

In this section, the principal implication of assuming a rational
power spectral density model is investigated. The random process {x(n)}
is said to have a rational spectrum if its power spectral density can be
expressed in the form

S (z) 2 B(z) B(z)()

A(z) A(z)

69

L~UZ_



2.

where a is a positive real scalar and the spectrum's characteristic ra-
tional function

B(z) = 1 + b1-1 + b-2 + ... + bqz-q

A(z) -1 -2 - 5
A 1 + a1z + a2z +-. +aZ (5)

is composed of polynomials A(z) and B(z) which have real coefficients, and,
the zeroes of these polynomials all lie within the unit circle of the z-
plane. This rational power spectral density is said to have order (p,q) and
its zeroes and poles are seen to occur in sets of complex conjugate recipro-
cals.

The fact that the denominator polynomial A(z) has all it's zeroes
located inside the unit circle enables us to provide a convenient system
interpretation of this rational discrete-time process. In particular, let
us consider the stable recursive linear system whose transfer function is
specified by the characteristic rational function (5). This linear system is
then governed by the pth order linear difference equation

x(n) = e(n) + b1y(n-l) + b 2c(n-2) + --- + b q(n-q)
q (6)

-a x(n-l) - a 2x(n-2) - .- - ap x(n-p)

in which E(n) and x(n) denote the excitation and response signals, respec-
tively. It can be readily shown that if this system is excited by a sta-
tionary white noise process as statistically characterized by

E{c(n)} = 0 and r (n) = a2 6(n) (7)

then the power spectral density of the response random process {x(n)} is
given precisely by expression (4). Thus, a stationary random process with
a rational power spectral density can always be interpreted as being the
response of a linear system to a white noise excitation. This linear sys-
tem is then said to have colored the excitation process and for this reason
we commonly refer to the system as a coloring filter as suggestively de-
picted in Figure 1.

B(z)
e!n) A•z) x(n)

White - . Colored
Noise Coloring Noise

Filter

Figure 1. Generation of a Rational Spectrum
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In the spectrum estimation literature, the general linear recur-
sive system (6) is conmonly referred to as an autoregressive-moving
average (ARMA) model. An ARMA model is seen to give rise to a rational
spectrum (4) which contains zeroes (via B(z) B(z- 1 )) as well as poles
(via A(z) A(z- 1 )) and is often referred to as a zero-pole model. The ARMA

model is the most general rational spectrum model possible. When the
numerator polynomial is constrained to be one (i.e., B(z) = 1), the impor-
tant subclass of autoregressive (AR) models is obtained. This all-pole
model is the one most often used in spectral estimation primarily due to
the ease with which one can determine the optimum A(z) polynomial which
correspond to a given finite set of observations (3). It is to be noted
that an AR model arises whenever one uses the basically equivalent maximum
entropy, linear predictive coding, or, autoregressive methods of spectral
estimation. Another subclass of rational spectrum models is obtained by
constraining the denominator polynomial to be one (i.e., A(z) = 1). This
all-zero model is commonly referred to as the moving average (MA) model.
The rational spectrum associated with each of these models is shown in
Table 1.

Process Spectrum

ARMA 0
2 B(ej4)/A(ejw) 12

AR 2 2I(ej')1

Table 1. Rational Power Spectral Density Classes

An examination of Table 1 reveals the more robust behavior of the
ARMA model in providing rational spectral estimates. This robustness was
recently demonstrated empirically in reference [5] where the ARMA model
was found to yield overall superior spectral estimates for a variety of
problems. Unless one has a prior knowledge which would indicate other-
wise, it then seems clear that the ARMA model provides the obvious choice

when seeking a rational spectral estimate. Unfortunately, the practical
problem of determining the optimum A(z) and B(z) polynomials which con-
stitute the ARMA model is an analytically intractable one and necessitates
an algorithmic solution. Moreover, unless the observed data length N is
sufficiently large, the standard whitening filter approach can yield poor
spectral estimates. A procedure for resolving this shortcoming will now
be presented.
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III. AUTOCORRELATION APPROXIMATION MODEL

In order to remove the apparent incompatability of determining
general ARMA spectral estimates from short data length observations, it
will be beneficial to examine the autocorrelation sequence. In particular,
our interest will be directed towards the causal segment of the auto-
correlation sequence as defined by

x+ r rx(n) n >: 0

r (n) rn(8)
0 n<0

Using the fact that the autocorrelation sequence is an even function of n,
the following expression is readily established

r (n) = r+(n) + r +(-n) - r (0) 6(n) (9)
x x x x

where 6(n) denotes the Kronecker delta sequence. Upon taking the z-transform
of this relationship, we obtain the associated power spectral density func-
tion

Sx(Z) = Sx+(Z) + Sx+(z-I r r(0) (10)
++x x x x

in which S+(z) denotes the z-transform of the causal sequence r (n). Clearly,

there exists a one-to-one correspondence between the two z-transforms Sx
and S+(Z).

When the power spectral density is of the rational form as given in
expression (4), a little thought will convince oneself that S+(z) must bexof the specific form

-il-
Co + ClZ + .. + C z-

S+(z) -1 (
x + alz +.. + a z

in which this representation's denominator polynomial corresponds to the
A(z) polynomial of expression (5). Upon multiplying both sides of this
representation by A(z) and then taking the inverse z-transform, the funda-
mental recursive relationship

r+ (n) = c6(n) + c,6(n-l) + .. + c 6(n-p)
x oP (12)

+ ++-ýalrx(n-1)- a~,r (n-2) - a r(n-p)
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arises in which the boundary conditions r +(n) =0 for n < 0 are imposed
to reflect the causal nature of the r (n)xsequence. Thus, if a random
process has a rational spectrum of order p, the elements of the associated
autocorrelation sequence will satisfy this recursive relationship for
appropriate choices of the ak, ck coefficients.I

Upon examination of relationship (12), it is apparent that knowl-
edge of the first 2p + 1 values of the autocorrelation sequence will
enable us to uniquely identify its characterizing ak, ck coefficients.
This information can then, in turn,be used to construct the underlying
power spectral density via expression (10). We shall now use a version of

this approach to effect a data efficient means of spectral estimation.S" This version must take into account the fact that the autocorrelation
element values are not known a priori. As such, the first step necessi-

tates the generation of autocorrelation estimates based on the N data ob-
servations provided. A standard estimation rule for achieving this ob-
jective is given by

A 1 N-n
r (n) = N-n E x(k) x(n+k) for n=0, 1, ... , N-1 (13)
x N-n k=l

in which it is tacitly assumed that 2p + 1 < N. One can readily verify
that this autocorrelation estimate is unbiased and that its variance
generally increases for increasing values of the lag index n (e.g., see
ref. [7]). This statistical behavior reflects a growing lack of confidence
in the autocorrelation estimate as n increases. This confidence factor will
be taken into account in what is to follow.

We next seek to determine values for the ak, ck coefficients govern-
ing model (12) which will be most consistent with these generated auto-
correlation sequence estimates. A generally accepted measure of consis-
tency is provided by the mean squared error criterion as given by

N-1 + 2
I(ak, ck) Z w(n)[r x(n) - r x(n)] (14)

n=O

where w(n) is a nonnegative weighting sequence used to reflect our de-
creasing confidence in rx(n) as n increases. Our objective is to then
select the ak, ck coefficients so that the sequence r4(n) as generated
by model (12) best approximates i•x(n) in the sense of minimizing criterion
(14). This is an analytically intractable problem and its eventual
solution necessitates an algorithmic approach. The ultimate success of the
spectral estimation procedure here described depends critically upon the
algorithm used. The linearization algorithm,as described in references [8] and
[91, has proven to be a significantly more effective tool than the standard
gradient method [10]. As with all algorithms, the intial coefficient
selection plays an important role in regards to how quickly the lineari-
zation algorithm converges and to which relative minimum it converges.
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A particularly effective initial coefficient selection method is to be
found in ref. [11].

A summary of the proposed spectral estimation method is outlined
in Table 2. It is important to note that the particular autocorrelation
estimate, and, optimum model algorithm to be used have not been specified.
Suggested procedures have been offered in this section, but the most
effective selections remains a subject of future research.

I^

Step 1: Generate an autocorrelation estimate r,(n)
from the N data observations.

Step 2: Determine the causal autocorrelation model
(12) which is most consistent with the es-
timated autocorrelation sequence obtained
in Step 1. One may employ an other than
mean squared error criterion for measuring
this consistency.

Step 3: Construct the spectral estimate using the
relationship

(e jW) - S+(e J) + S+(e-J") - rA(0)

= 2 Re[S+(e ] (0) (15)
x

in which the most consistent model S +(z)
found in Step 2 is used. x

Table 2. Basic Steps of the Proposed
Spectral Estimation Method.

IV. NUMERICAL EXAMPLES

A spectral estimation problem which arises in a surprisingly large
number of applications is that of the detection and parameter identification
of sampled sinusoids from noise contaminated measurements. This particular
class of problems serves as an effective means for measuring the performance
of spectrum estimators relative to (i) detecting the presence of sinusoids
when the additive noise is strong, and (ii) resolving two or more sinusoids
whose frequencies are closely spaced. In this section, we shall apply the

V autocorrelation estimation method (AEM) to estimate the spectrum of the
fourth order ARMA generated data as governed by
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x(n) -A sia[0.4irn] + A sin[0. 4261rn] + w(n) 0 < n :S 63 (16)

in which {w(n)} is' a zero-mecan white noise Gaussian process with varianceone0. It is to be noted that the frequency spacing of the constituent
sinusoids iu . 0.0267r) is less than the resolution capability of the
standard discrete Yourier transform (i.e., 21r/64 - O.Q3l12570. This parti-
cular lproblum has been considered in detail in refevence [121 where the
performance oi some of the wore c~oiiiunnly used spectral estimators were
compared. The individual sinusoida~l signal-to-noise ratio for the above
siginal as expressed in decibels is given by 10 log(A2 /2). In order to de-
terinien the effectiveness of the AM~ in diffevent noise environments we
shall consaider two sinusoidal amplitude parameter selecticiis.

CASE I :A- 0O]

When the sinlusoLid's amplitude is set at A - 20,the prevailing
SNR Is 30 db. In this strong ailynal case, we shiall be testing the spectral
estimator-'s ability to resolve closely spaced (in frequency) sinusoids, and
to accurately estimate their frequencies. Upon generation of the postu- j
.Thted sequenceU (16), the, autocorrelation estimaute was generated according to
the Unbiased ruLe. (13). The lint~arizationl 11lgorithim was ur.ýxt employed to ob-
Lalin. the bust fourth order (i.e., p 4) AM~A autocorrelationl model in
Which Lthe weighting sequence w(n) - (N - 11)2 was selected so as to ref lect
out' duercrasing confiidence in Lthe autocorrelation Lustimiates for increasing
f.'WLuca of ii. Thiu A101A model was then used to generate the required spectral
uutiwate according to

s x W) 21W[S x(c1 ) r x (0) (7

A 1)1St of this AEM estimate over the normaliz.ed frequency interval is
sh1OWn in VigIUI-e 211 where: the frequoeny resolution capabilities are clearly
evident. The estiimalied center Fr(.queflciL's were found to correspond almost
exacutly to the siinusoids used in generating the data. I~n this and the plots
to i'ollow, the spectral peak has been normalized to 30 db, and no special
r.outiiinc han been uempl.oyed to determine the amiplitudes, of the constituent
iwinuuoida froit this spuctral cstimut I

Vor Comp~arison purposes, a covariance AR spectral estimate of
(ii re) fifteen was ntext generated using data (16). As demonstrated in
re] erence [.12], thisu particular Alt spectral estimlator works particularly
well for this class 'f problemsw. Thei results of this Lovariance ARl
spect-ral. estimate are~ shown in Figure 21b. Aý- might be anticipated, the
covariance Alt met~hod also yieldu excellent resolution capabilities in this
high ISNR enviroinment. The estimated center freque~ncies obtained were -also
oi good quality.
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(b) Viftewinth Order Alt Spectral. Estimate.
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N CASE 11 A =/2

For this sinusoidal amplitude selection, the prevailing SNR is
zeio d.b. Using the same procedure as in Case I, a fourth order AEM2Y
spectral estimate for this low SNR case was found and is displayed in
Figure 3a. Significantly, we are still able to detect the presence of
two sinusoids and obtain reasonable estimates of the sinusoidal frequen- 1
cies (i.e., 0.392 and 0.430). On the other hand, when a 1 5 th order AR
spectral estimate is generated from this data, the resultant spectrum
plotted in Figure 3b demonstrates a failure to detect the two sinusoids.
This inability can be attributed to the fact that the actual spectrum con-
taius z-roes (due to the strong white noise) close to the unit circle
which results in an AR spectral model mismatch. Thus, in this hostile
noise environment, the AEM spectral estimator produces clearly superiorresults.

V. CONCLUSION

The autocorrelation estimation method (AEM) for generating on APMA
rational spectral estimate has been presented. This procedure offers the
promise of achieving effective spectral estimation performance without
requiring an excessively large number of data samples to do so. In order
to reach its full potential, however, a number of fundamental issues have I
to be resolved. Perhaps the most important of these involve the specific
procedure used in determining the autocorrelation estimates, and the selec-
tion of error weights used in the squared error criterion. The former is
most critical since if "poor" autocorrelation estimates are used in generat-
ing the optimum ARMA model, one cannot possibly hupe to achieve an accurate
spectral estimate. On the other hand, even with acceptably good auto- I
correlation estimates, a proper weighting of model error is required in
order to reflect the growing lack of confidence in the autocorrelation esti-
mates for increasing values of n. It is felt that the weights to be used
should be data dependent. Some other issues which must also be resolved are:
(i) determining the order of the ARMA model, (ii) investigation of cri-
teria other than squared exror, (iii) developing fundamentally different
procedures which make use of the causal autocorrelation concept herein pre-
sented for obtaining spectral estimates.
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ARMA SPECTRAL ESTIMATION:

AN EFFICIENT CLOSED-FORM PROCEDUREI

James A. Cadzow
Department of Electrical Engineering

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

(703) 961-5694

ABSTRACT

A closed-form procedure for generating an ARMA spectral estimate of a
stationary random time series, based upon a finite set of contiguous observa-
tions, is presented. As in the maximum entropy method, this procedure in
effect extrapolates an autocorrelation estimate beyond the data limited range
thereby offering the possibility for improved spectral resolution in compari- I
son to the more classical Fourier based approaches. Unlike the maximum
entropy method, however, this procedure has the additional flexibility of
generating a spectral model which possesses zeroes as well as poles. As such,
it has a more robust behavior and therefore the capability of producing supe-
rior spectral estimation performance. This latter claim has been empirically
confirmed for a number of examples in which these two methods have been I
•plied. Significantly, the computational requirements of the two procedures

are comparable. This suggests that the herein developed ARMA spectral esti-
mator can be used as a primary tool in spectral estimation.

I. INTRODUCTION

A signal processing problem which arises in a variety of interdisciplinary
applications is that of estimating the spectrum of a stationary random time
series. This estimation is to be based wholly on a set of N contiguous obser-
vations of thaL time series as represented by I

x(l), x(2) , x(N) (1).,.

The inability to monitor the entire history of the infinite length time series
reflects constraints which usually prevail in virtually all real world appli-
cations. Unless some assumptions are made relative to the statistical struc-
ture of the underlying time series, the generation of a spectral estimate from

Research sponsored by, thl Air Force Offi e of Scientific Pesearch/AFSC,
United States Air Force under Contract 149620-79-C-0038. The United
States Government is authorized to reproduce and dirctribute reprints
for governmental purposes notwithstanding any copyright notation hereino.
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this finite data is a poorly posed problem. This is a direct consequence of
the fact that the spectral content of a time series is completely specified by
its associated autocorrelation sequence

r X(n) = E{x(k)x(k+n)) n = 0, +1, +2, . . (2)

in which E denotes the expected value operator. Clearly, there exists a basic
information content incompati.bility between the infinite extent autocorrela-
tion sequence and the finite set of time series observations upon which the
sr ctral estimate is to be based. This incompatability is usually resolved
t. -ugh the process of parameterizing the underlying spectrum in some logical
mI n .,er .

The power spectral density corresponding to the stationary time series
{x(n)} is defined to be the z-transform of the associated autocorrelation
sequence (2), that is

cr(z) Z r (n) z-n (3)I X n=_co°

where z is a complexed valued variable. .In the spectral estimation literature,
the z variable is usually replaced by e thereby yieldini the equivalent
Fourier transform characterization as designated by S (eo ). With this latter
representation, one can interpret the spectrum as being a function of the real
frequency variable w.

In classical spectral estimation, one utilizes a standard Fourier trans-

form based method, such as the periodograan, to effect 'the spectral estimate.
The primary drawback in these Fourier based methods resides in the inherent
assumption being there made that the time series is identically zero (or
periodic) outside the observation window 1 < n < N. Generally, this is a very
unrealistic assumption to make in virtually all practical applications (e.g.,
radar doppler processing) and will usually result in.poor spectral estimation
performance. In recognition of this fact, a n~umiber of modern spectral esti-mation procedures have been developedl over the 'pzast decade to counteract this ,

deficiency. By in large, the typical modern spectra]. estimation procedure
models the spectrum as a rational function. Such a mode). can be Justified on
the basis that any continuous power spectral density can be approximated
arbitrarily closely by a rational furotion of' sufficie~ntly high order [1].

The, most widely- used rational spectral mode] is the so-called all-pole
model, which has given rise to the essentially equivalent autoregressive,
linear predictive coding, a•nd maximum entropy methods of spectral estimation.
A set of basic papers treating these and other spectral estimation procedures
is to be found in ref. I2]. All-pole spectral estimators are capable of pro-
vidi ng increa.ed resolution in comparison to the classical methods when only
a ulmla:LI nmnber of, time series ob.;servatlous are available. It must be noted,
howe:'ver, that if' the time nor i (S spec L1rU11 iLs a rational function which
i1 o0ss(-Us'es Uzeroes as we01l as poLes, then an all-pole estimator can yield poor
,pect~ral. estimates. Clearly, the ability to generatte a zero-pole speo(:rum

1mode]. prcovideor for a1 po)tentiaUlJy liiorC robust ont:iuIator :1. n coomparison With the

"standard a1ll-pole model. Wi.ih this in mind, a number of' zero-pole spectral
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estimation methods have been developed. They include estimators which utilize
the so-called whitening filter concept (e.g., [3] & [4]). Unfortunately, this

class of spectral estimator procedures are iterative in nature, and, typically
require a relatively large number of time series observations to be effective.
Another approach which makes use of the recursive nature of the time series
autocorrelation sequence and does not share these liabilities was developed by
Box and Jenkins [5]. A modification of this method involving a more efficient
noniterative method for generating the moving average coefficients was recently
proposed [6] and 17].

In this paper, a zero-pole spectral estimator is developed which also makes
use of the recursive nature of the autocorrelation sequence. It distinguishes
itself from the Box and Jenkins method, however, in that a least squares fit
to a set of equation errors is used to generate the autoregressive coefficients,
and, a noniterative procedure for generating the moving average coefficients
is offered. Significantly, the proposed spectral estimator has been empiri-
cally found to produce superior estimation performance when compared with the
Box and Jenkins method and its varients.

II. RATIONAL SPECTRUM MODEL

One of the most widely used models for spectral estimation is the rational *1
model. The stochastic time series {x(n)} is said to have a rational power
spectrum if its power spectral density can be expressed in the form

S (z) = 11(z) -i(z- 1 ) a2 (4)

2
where O is a positive constant and the characteristic rational function

(z + B()) 1 + z + . . + b 
(5)

i(Z) + az + . .dni P Z

is composed of polynomials A(z) and B(z) which have real coefficients and have
zeroes wholly contained within the unit circle. The rational power spectral
densit-y (4) is said to have order (p,q) and its zeroes and poles are seen to
occur in sets of complex conjugate reciprocals. For reasons which will be
shortly made clear, we shall refer to the a n ard b coefficients as the auto-
regressive and moving average coefficientot, respecUi.ve1y.

A particularly convenient interpretation on how a stochastic time series
with rational spectrum may arise follows directly from the characteristic
rational functi on. This entails treating the characteristic rational function
W5 as being, thu transfer function of a causal, time-inrvariant linear sy-stem,

[CIL then follows that this system will be characterized by the recursive
equa t ion

q P)

x(n) =Zbi c (n-i) - a x(n-i) (6)
i=O i l8
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(A

where bo=l and the time series {W(n)} and {x(n)} are taken to be the excita-
tion and response signals, respectively. It i,, wtli known that when this
system is excited by a stationary white nois,- time series as statistically
characterized by

E(E(n)} = 0 and re(n) = a2 ) (67)

that the power spectral density of the response time seiies is given precisely
by relationship (4) . Thus, a stationary random time seiies with rational
power spectral density can be interpreted as being the response of a causal,
time-invariant linear system to a white noise excitation. This linear system:1 is then said to have colored the white noise excitation process (i.e.,
S 1(z) = 1) and for this reason it is commonly referred to as a coloring filter
as suggestively depicted in Figure 1.

c(n) B(z) x(n)

White A(z) Colored
Noise Noise

Coloring
Filter

FIGURE 1: Model for a Rational Spectrum Generator

The general linear system (6) is commonly referred to as an autoregressive-
moving average (ARMA) model in the spectral estimation literature. This ARMA
model is said to be of order (p,q) and it gives rise to the rational spectrum
(4) which possesses both zeroes (via B(z)) as well as poles (via A(z)). The
AHMA model is the most general of rational spectrum models possible and its
ak and bk coefficients uniquely characterize the spectrum.

In the spectral estimation literature, the preponderance of activity has
been directed towards the special class of ARMA models known as autoregressive
(AR) models. An Ali model is one in which the numleraLor polynuniial B(z) is
equal to the constant orie (i.-e., bk = 0 for k # 0). As such, "tLhe AR model is
also referred to as an all-pole model since its transfer function Is upecifled

by

11(z) 1

1 The Kronecker delta sequ(ence iS defined by

i(n) =

o(n u 0 otherwise,
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I rr,



This all-pole model is the one most often used in spectral estimation primarily

due to the ease with which one can compute the ak coefficients that correspond
to a given finite set of time series observations. It should be noted that it
is always possible to approximate a general ARMA model by an AR model in the
following manner

1 1
H(z) = A (9)

whereby the polynomial Al(z) is obtained by suitably truncating the power

series l/B(z) as generated by long division. Clearly, the effectiveness of
this approach is dependent on how quickly the coefficients of the long divi-
sion 1/B(z) converge to zero. If B(z) has a zero very close to the unit
circle, this convergence rate will be extremely slow thereby making impractical
the approximation of an ARMA model by a reasonably low order AR model. It can
be conjectured that this is one of the main factors as to why AR models fail
to yield satisfactory spectral estimates of time series composed of sinusoidal
samples in a strong noisy environment (an AJMA process).

Another subclass of rational spectrum models which has received attention
is the so-called moving average (MA) model as characterized by A(z) = 1. The
transfer function of a MA model is given by B(z) and it is therefore also
referred to as an all-zero model. With these thoughts in mind, it is apparent
that a general A13MA model is composed of the cascading of an AR with an MA
model. The rational spectrum associated with each of these models is displayed
in Table 1.

MODEL SPECTRUM

MA o.B(eJ A ), 2

Ali o2/IA(eJ w) 12

A14MA U2I3(edW)I12/I( 1w)2S°21I I IA(de I

TABLE 1.. Rational Spectrun Models

An examination of Table 1 reveals the greater flexibility which the ARMA
model possesses in providing rational spectral estimates. This robustness was
recently demonsteated in which the ARMA model. was found to provide the overall
best spectral estimates for a variety of problems [3]. Unless one has a priari
knowledge which would indicate otherwise, it seems clear that the ARMA model
is the one to utilize when seeking a rational spectrun model. Hereafter, we
shall concern ourselves with the practical task of develop:i.n( feasible proce-,
dures for determining the "optiminn" coefficients of un AIMvA model based on a
finite set of time series measurements.



III. FUNDANENTAL AUTOCORRELATION RECURSIVE RELATIONSHIP

For reasons alluded to in the last section, there exists a basic incom-
patibility in generating an ARMA spectral model, which is most consistent with
a given set of time series observations, when the number of observations is
small. This incompatibility can be, to a large extent, alleviated by
appealing to a fundamental recursive relationship characterizing ARMA time
series. This relationship is obtained by analyzing the "causal image" of the
autocorrelation sequence as defined by

+( { rx(n) n 0>
r (n) (10)

0 n<O 0 i
Since the autocorrelation sequence of a real valued time series is an even
function of n, it is apparent that one can reconstruct the autocorrelation
sequence from its causal image according to

S+ r +(n) +r (-n) - rx (0) 6(n) (11)

Upon taking the z-transform of this expression, the desired power spectral
density is found, that is

S (z) = S +(z) + S z 1 ) - r (0) (12)Sx(Z :x (z x, I
where the function S +(z) denotes the z-transform of the causal image
sequence (10). Thus, a power spectral density estimate may be equivalently
accomplished by estimating the function Sx (z). This will be the approach
taken in this paper.

When the underlying power spectral density is of the rational form (4),
a little thought should convince oneself that the function Sx (z) must be of
the specific rational form 1

+ co + Clz- + •. •+ CpZ-p

S (z) + l + .. . +.pz- (13)
x I+ a IZ-1++a p

2.p

in which the denominator polynomial is identical to the A(z) polynomial that
in part characterizes Sx(z)1 . Upon multiplying both sides of this equation
by the polynomial A(z) and then taking the inverse z-transform, uric readily
arrives at the following fundamental recursive relationship

+ P
r (n) = i 6(n-i) + U a.r (ri-i) (14)

,, x ~i.=Oi:l"xX i~l !i
, l>It is here assumed that the A1MA model of order (p,q) is such that

o > q. When this is not the case, the degree of the nunerator polynomial
C(z) must be increased to q.
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where the natural boundary conditioný r (n) = 0 for n < 0 are imposed to
reflect the causality of sequence r (n). Thus, the causal image of an ARMA
autocorrelation sequence of order (p,q) is seen to be governed by a linear
difference equation of order p.

Upon examining fundamental relationship (14), it is apparent that a
knowledge of the a., c. coefficients will enable one to generate the entire1 1.
autocorrelation sequence. If it were somehow possible to accurately estimate
these coefficients from the given time series observations, a particularly
effective method of spectral estimation is suggested. Namely, these coeffi-
cient .stimates, when substituted into equation (13), will provide an estimatefor Sx (z). Using this estimate in relationship (12), the desired power

spectral density estimate is then obtained

Sej (e 2ReE0c k e-J/k [1 +kElake-kl r rx(0^ ) (15)
S(15

where use of the fact that S +(ejw ) and S+(e-j) are complex conjugates hasx
been made. We shall now present a procedure for estimating the a., c. coeffi-
cients with the ultimate goal of using relationship (15) for the speciral
estimate.

IV. ARMA MODEL COEFFICIENT SELECTION PROCEDURES

The most critical step of the proposed spectral estimation method involves
estimating the a and ci coefficients. In this section, the so-called direct
and indirect procedures for accomplishing this task will be described. The
direct approach makes explicit use of the fundamental autocorrelation relation-
ship derived in the previous section. On the other hand, the more effective
indirect approach uses an alternate approach which provides a solution proce-
dure that is consistent with the fundamental autocorrelation relationship.

Direct Method

In the direct method, one first generates estimates of the autocorrelation
sequence from the given time series observations using some convenient method.].
These estimates, denoted as rx(n), are then substituted into fundanental
relationship (14). In recognition that the autocorrdlation estimates will be
generally in error, and that the ARhMA model order paxrameter p may be incorrect,

it follows that this substitution will give rise to the following "equation
error" sequence

P A

e(n) r (n) + Z air (n-i) - • ciS(n-i) O<n<N-i (]6)
x i=l i=O _ _

A

in which r.(n) 0 f'or n < o.

IAs an exwaple, one mighL use the biased estimator.
l,, N-n

rn x (kx(k+n)
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Our objective will that of selecting the models ai, ci coefficients so as to
minimize these equation errors in some sense. For reasons of mathematical
tractability and subsequently demonstrated effectiveness, the equation error
criterion to be minimized is taken to be the quadratic functional

N-1 2f~,• E=7 w(n)q2n W1r)

n=O

The nonnegative weights, w(n), are usually selected to be montonically noh-
increasing (i.e., w(n)> w(n+l)) so as to reflect an anticipated degradation
in equation error accuracy for increasing n. This degradation behavior arises
primarily from a loss in autocorrelation estimate fidelity- for increasing lags
(i.e., n).

In minimizing this functional with respect to the ci coefficients, it is
apparent from relationship ki.6) that the ci coefficients have no effect what-
soever on the e(n) for n > p. This being the case, it foliowo that the
optimum ci coefficients must be given by

0 ^n ^
C r(O) + air (n--i) 0 < 1i C (18)

since such a selection will render the equtition orrors, e(u), ideouticlly zuro
over 0 < n < p for "any" choice of the ai autoregreta3 ive coefl'ic i nAu. t.
then follows that the optimum autoregressive coefficienton must r;endor thu
remaining terms ( i. e. , < n < N) of the quadratic fiunctio nal a minium,
With this in mind, let us express these specific out 0], (ol, ,eioi-.i e..rrorsl '1n
the matrix format

IA
e(p+l) r.x((p) r£(p-l x C1. aX441)SI,- ( " .( , 4

e ) rx( p+l) rx(p) ar, k( 2.)) ,)

• = , . + . (0.1)

whelir use of. relati•.ou•l:ii) (l(6) for n > 31 h:. < i i ii111 .l . .l.h:., m t.:Ix fly's ,L,1t ('
equations can be cony V•ni . titly' cx.jlre'5le. (ti

In whichili LI i h px]. au1-o l o gr. ,l5Iv,- , '1,.';1 ci. ci it vweLot' withi eLoi,( rt,'it a.i .
and .', a(r ellch (N-p-l)xl ve'tors witi ci 'nnentu c ,()t+) sid r (p4 o) ti V (ly,

arid In ai L (N- -]) X't'x)' . ' 1, 1?.'', xIfl(L. VI ,
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A little thought will co*ivince oneself that for the optimum ci coefficent
selection given by relationship (18), the quadratic functional (17ý may be
equivalently expressed as

f(ac) = Ra + rYWiRa + r] (20)

in which W is a positive semidefinite (N-p-l) x (N-p-l) diagonal matrix whose
diagonal elements are given by wnn = w(p+n) for n=l,2, . ., N-p-l. The
minimization of this quadratic function with re.,pect to the autoregressive

coefficient vector is straightforwardly carried out and results in the follow-
ing system of p linear equations for the required optimum autoregressive
coefficient vector

[R°WR~a = -R'Wr (21)

One then solves this system of linear equation to obtain the desired optimum
autoregressive coefficients. Upon substitution of these autoregressive coeffi-
cients into relditionship (18), the optimum ci° coefficients are next determined.
Finally, the desired power spectral density estimate is obtained by substi-
tuting these optimum ai , ciO coefficients into relationship (15).

It is of interest to note that the system of equations for the auto-
regressive coefficients (21) reduces to the Box-Jenkins method for a weighting
selection of w(n+p) = 1 for 1 < n < p and zero otherwise. Unfortunately, this
particular weighting selection implicitly assumes that the equation errors e(n)
for p+l < n < 2p all have the same statistical behavior. More realistically,
one would presume that the equation errors become more random as n increases.
It is then conjectured that the primary reason as to why the Box-Jenkins
method does not provide adequate spectral estimates for certain problems is
due to this particular weighting choice and the fact that it makes no use of
the fundamental autocorrelation relationship (14) for n > 2p whatsoever,

Indirect Method

Although the direct method has been found to provide satisfactory spectral
estimation performance, the indirect approach to be now briefly described has
yielded significantly better performance. Its development is based on the
coloring filter's characteristic equation (6), and the fact that the random
variables x(n) and E(m) are uncorrelated for m > n. To 'begin this development,
we shall first replace the variable n appearing in relationship ( 6) by k.
Next, each side of this characteristic equation is multiplied by x(k-n)/(N-n)
to obtain

x(k) x(k-n) q P
xk) xE bLi (k-i) E aix(k-i)1 x(k-n)

• =n0 i=l N-n
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If both sides of this equality are then summed over the index range n< k <N,
after rearrangement one obtains

e(n) = Z x(k-i)x(k-n) 1 a. + Z n+l
k=n+l -k x

for p< n < N (22)

where the pseudo equation error term is specified by

q F 1  N
e(n) E e i (k-i ~-n)] p < n < N

i.=0 ~ k=n+l xk

Upon examination of this expression, it is clear that the expected value of the
term e(k-i) x(k-n) will be zero. This would indicate that the general pseudo

equation error term I(n) will itself tend to be close to zero (this is reen-
forced by the division by N-n). With this in mind, a logical choice for thp

ai coefficients used in expression (22) would be one which tended to minimize
the pseudo equation error sequence.

If one compares the pseudo equation error relationship (22) with the
equation error relationship (16), a similarity is in evidence. Namely, the
elements within the brackets of expression (22) are recognized as unbiased
autocorrelation estimates. If these estimates are substituted for the

entries of matrix R and vector r in relationship (19), a new system of equa-
tions (21) for the optimum autoregressive coefficients arises. These new

system of equations distinguish themselves from the former in that a genuinely
different autocorrelation estimate formula is used for each equation. Once
this modified system of equations have been solved for the ai coefficients,
the ci coefficient estimates are obtained according to

N n I N
C11

0= I x2 (k) + E a. -0 Z x(k)x(k-i)] O<n:p (23)
k=p+l

The required power spectral density estimate is then given by relationship

(15).

V. NUMBERICAL EXAMPLES

To test the effectiveness of the proposed ARMA spectral estimator method,
the classical problem of detecting the presence of sinusoids in additive noise
will be considered. In particular, we will investigate the specific case in
which the time series observations are generated according to

x(n) = Alsin(Trfln) + A2 sin (•f 2 n) + w(n) 1 < n < N (2h)

90

4.

ij -



where w(n) is a zero mean Gaussian time series with varia.nce one. This
particular problem serves as an excellent vehicle for measuring a spectral
estimator's performance relative to: (i) detecting the presence of sinusoids
in a strong noisy background, and (ii) resolving two sinusoids whose fre-
quencies f and f, are nearly equal. The individual sinusoidal signal-to-
noise ratios (SNR) for the above signal are given by 20log (Ak/! ý) for k=l,2.
In order to consider the effectiveness of the proposed ARMA spectral estimator
in different noise environments, we shall consider two cases. These cases
have been examined in reference [81 where the performance of many modern
spectral estimators are empirically compared.

CASE I: A1 = /20, fl=0.4 and A2 I2, f 2 =0.426

In this example, we have two closely spaced (in frequency) sinusoids in
which the stronger sinusoid has a SNR of 10 dB while the weaker sinusoid has
a SNR of 0 dB. For this relatively low SNR case, the spectral estimator's
ability to resolve two closely space sinusoids, and simultaneously identify
the frequencies will be tested. Upon generating the sequence (24) for N=64,
the indirect ARMA spectral estimator method was used for a selection of
weights w(n)=N-n and p=15. The resultant spectrum is displayed in Fig. 2a
where the frequency resolving capability of this method is in evidence. The I
frequency identification accuracy was also excellent in that the sinusoid
frequency estimates were fl = 0.398 and f 2 = 0.425.

For comparison purposes, the covariance AR spectral estimate (basically
the maximum entropy method) and the revised Box-Jenkins [6] ARMA estimate of
order 15 were generated using the same data. The results of these estinations

are displayed in Figures 2b and 2c where an inability to resolve the twd
sinusoids is apparent. This gives evidence of the inherently superior pfý±-
formance capability of the herein described ARMA spectrum estimator over
standard AR estimator procedures and other ARMA methods

CASEII: A1 = fl = 0.32812, A2 = f2 = 0.5

We are now examining the ability of the ARMA spectral estimator to
detect sinusoids in a low SNR environment (i.e., 0 dB). For a selection
of N=64, w(n) = N-n and p = 5, the resultant ARIA spectral estimation is dis-
played in Figure 3a. Clear, one is able to detect the presence of the two
sinusoids, and the frequency estimates f 0.3202 and f 2 = 0.5012 are of
good quality considering the prevailing SNR environment. A 15th order
covariance AR spectral estimator was then found to generate the spectral
estimate displayed in Figure 3b. Although the two sinusoids were properly
detected, a number of false peaks are in evidence.

Digital Filter Design

It is possible to use the proposed ARMA method for synthesizing digital
filters. To illustrate the approach that is taken, let us consider the
specific case of designing a low-pass filter of normalized, cutoff frequency
f . One may readily show that the impulse response of an idealized version

c
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FIGURE 2: Spectral Estimation of two sinusoids with one of 10 dB SNRI
(f=0.4) and the other at 0 dB SNR (f=0.426) (a) 15th Order
"ARMA estimate, (b) 15th Order AR Estimate, (c) 15th Order
ARMA Box-Jenkins Estimate
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of this low pass filter is given by sin[Tf n]//7n. With this in mind, one
then applies the herein developed ARMA procedure to the specific sequence

x(n) - sin[7rfc(n-O.5N)1/r(n-O.5N) 1 < n < N

The resultant 0RMA model obtained in this manner will have the attenuation
characteristics of the desired low-pass filter. To illustrate this, a 15thorder ARMA spec ral estimate of this sequence was made for f = 0.2, N = 256

and w(n) =[N-n]. The resultant filter's magnitude characteristics are dis-
played in Figure 4 where the low-pass characteristics are in evidence. In
a paper now in preparation, a detailed description of this filter synthesis
urocedure will be made and compared to an alternate method [9].

VI. CONCLUSION

A computationally efficient closed form method for generating ARMA
spectral estimates hao been presented. Conceptually, the method offers the
promise of producing superior spectral estimation performance in comparison
to such AR spectral estimators as the autoregressive, linear predictive coding,
and maximum entropy methods. Empirical results have substantiated this
coinjecture. "a

In order for this method to achieve its full potential, a number of
important considerations need further investigation. They include determi-
nation of the most effective autocorrelation estimation procedure to use
since an inferior procedure will general]. result in poor spectral estimations.
Another important consideration is the choice of error weights. This
weighting selection should reflect, in some manner, our growing lack of
confidence in the autocorrelation estimates for increasing lr,gs (n). Since
no statistical assumptions on the time series are being made (other thaL it
is an ARMA time series), it is apparent that the weighting sequence should
be data dependent. One further consideration is that of determining a pro-
cedure for ob~aining the best choice of the APMA ordering parameter p.

As a final point, it should be noted that the herein presented procedure
can be used to generate ARMA spectral estimates from basic AR methods. In

particular, one could use any standard AR method (e.g., the maximum entropy
method) to generate the autoregressive coefficient estimates. Using these j
coefficient estimates and suitable autocorrelation estimates (often byproducts
of an AR method), one then uses relationship (18) and then finally expression
(15) tu generate an ARMA spectral estimate. This will result in little addi-
tional computational co•st over the "pure" AR wethod due to the simplicity of
relationships (15) and (l). The effectiveness of this hybrid approach will
be subsequently reported upon.
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EXTRAPOLATING BANDLIMITED SIGNALS
WITH NOISE AND OUANTIZATION

KENNETH ABEND AND JUDITH R. PLATT

RCA Government Systems Division
Missile and Surface Radar

Moorestown, New Jersey 08057

Abstract

In many applications of spectral analysis (e.g., short radar dwells) the
need arises to obtain spectral resolution from an extremely short time segment
of a bandlimited signal. Instead of applying a window and assuming the
function to be zero outside of the observed segment, the modern approach is to
extrapolate. Knowledge of the bandwidth of the signal allows for accurate
extrapolation over a limited time interval that is many times the length of
the given segment, provided that the signal is sampled at many times the
Nyquist rate. Of several alternate ways to find a bandlimited signal of
minimum energy that fits the observed samples, Cadzow's method is the simplest
because it utilizes a matrix whose size is determined by the number of samples
before extrapolation. However, the ill conditioned nature of the Cadzow
matrix makes it extremely difficult to extrapolate coarsely Quantized, noisy
signals. We solve this problem with an iterative procedure that preserves
the small-matrix advantage of Cadzow's method. Examples involving non-ideal
signals quantized to as few as five bits are investigated in order to determine
the extent of reliable extrapolation.

Introduction and Summary

The purpose of this paper is to demonstrate that a time limited set of
samples of a bandlimited signal can be extrapolated with limited computer
resources and realistic signals. When Cadzow's one-step extrapolation
procedureL[-3] is applied to finely Quantized samples of a bandlimited signal
in bandlimited noise, the signal and noise are satisfactorily extrapolated.
When the noise bandwidth is increased and/or when the noi.y samples are
coarsely quantized, problems arise due to limited computer accuracy because a
set of linear equations is ill conditioned. We show that by solving these
equations iteratively by the method of steepest descent, reliable extra-
polation can be performed in the presence of noise with the input ouantized
to as few as five bits plus sign.
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By using signals consisting of the sum of sine waves with unequal
amplitudes and phases, we obtain a more realistic picture of the limitations
of the algorithm. Specifically, while the input may be limited to a small or
a large fraction of a Nyquist interval, the extrapolated signal is seldom
reliable for much more than three Nyouist intervals.

Bandlimited Extrapolation

Let the signal g(t) be bandlimited tolfl<B, i.e., its Fourier transform

G(f)f • g (t)exp (-j 2Trft)dt satisfies

G(f)= 0 for Ifl>B. (1)

If g(t) 0 for O<t<T with T>O, then g(t)=O for all t. By considering
g(t)-gl(t) with g(t-=gl(t) for O<t<T, we see that if g(t) is given for
O<t<T, it is uniquely determined for all t. Cadzow's one-step extrapolation
procedure is based on finding a signal z(t) with the following properties.

(a) z(t) = 0 for t<O and t>T

(b) Bandlimiting Z(t) to B produces a signal that agrees with g(t) for
O<t<T (and hence for all t), i.e.,

g(t) = (T)exp(-j2•fT)d exp(j27ft)df
(2)

2B Jz(T)sinc[2B(t-T)]dT

where

sinc u sin (iru) (3)ifU

Let g(t) be sampled at r times the Nyquist rate, i.e., A<I/(2B), where A

is the sampling interval and 1/2B is the Nyquist interval, so that:

r 1 (4)
2BA >1

If we are given only M samples of g(t): g(mA),m=l,2,...,M, we approximate
equation (2) by N

g(ma) : )~A 5

r rK-1
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Since z(t) is not bandlimited, A must be very small. In this sampled-data
low-pass case, Cadzow's algorithm simplifies to:

1. Solve M linear equations io M unknowns for z(kA), k=l,2,...,M from
equation (5) with m = 1,2,...,M.

2. Using these M values of z, determine g(mA) for m<O and m>M from
equation (5).

More generally, we can simultaneously interpolate and extrapolate by using
M

g(t) : 2BA L sinc [2B(t-kA)]z(kA) (6)
K=I

For the bandpass case (FI<jfI<F2 ) Cadzow develops equations similar to
(2) and (5), with the sinc function replaced by the difference of two sinc
functions. However, if we use the complex envelope, g(t), where

gBp(t)=Re[g (t)exp(j2Trfot)] (7)

with fo= (F +FI)/2, then equation (1) through (6) remain valid with B=(F 2 -FI)/2
(the bandwidth is 2B). We can sample the complex signal 2 g(t) at r times the
Nyquist rate (2B) and utilize equation (5) in steps 1 and 2 above to extra-
polate both the real and imaginary parts of g(t). Preliminary results,
obtained to date, seem to be nearly independent of whether the real or
complex formulation is used. The results presented "in this paper were
obtained on the Hewlett-Packard System 45 desktop computer using the real
formulation.

We express the sampled signal in tne form

M I

gm=Z hmk zk (8)
K1

1. In contrast to Nyquist interpolation by either
q(t) = sinc(t/A-m)g(mA) or g(t)= , sinc(2Bt-m)g(m/2B).

M M.

2. This is commonly referred to as I and Q samp!i.
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and for m=1,2,...,M; in the vector-matrix form

G = H Z (9)

Here G and Z are M-dimensional column vectors with elements gm1 q(mA) and
Zk=z(kL), and H is an MxM Toeplitz matrix v.qth elements hmksinc ((m-k)/r)/r

in the low-pass case. Jain and Ranganath 4J have shown that given G, (8)
and (9) produce a minimum norm least squares solution for N values of
g(mA) with N> M.

The most direct solution involves inversion of the matrix H. This is
especially useful when the bandwidth is known a priori and H can be inverted
off line. Because of the ill conditioned nature of H, Jain and Ranganath
propose iterative solutions that involve NxN matrices. By utilizing only
MxM matrices, we reduce the computational complexity by an order of
magnitude. We therefore consider the solution of (9) alone, and use that
solution in (8).

Method of Steepest Descent[5]

This technique which progresses geometrically to the true solution from

an initial guess proved to offer valid results for a';l examples whether ill-
conditioned or well-conditioned. The iterative procedure is initiated with
an estimate of the vector values

(0) [z1 (0), (0) .. Zm (0)3 T

and continues with the single step iterative equation for a symAmetric
positive definite matrix Ii:

z(k+l) = z(k) + a(k) R(k) (10)

Here R(k) is the vector
R(k) (k) (k) (k)]T

= [r , r2  rm

with elements

(k) (k)

r. 91 h > 1
and the scalar • (k) is given by0
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( ( rj k)2)

0(kkr K) t(ijhirik (k

The notation R(k) indicates that this is the k iteration of the vector R.

If many iterations are expected a multistep general form of the iterative

equation is

(k+l) (k) + (K)H R(k)
z z +z

with the scalar values .£(k) determined from

P1(k)(HiR(k),H +l R ) (= ( , R(k)) iO,l ,.. .

J=o

where p is the number of iterative steps per computation, i-i is the product

of the matrix with itself i times, and the notation (A,B) represents the dot

product of A and B.

The iteration procedure is terminated when the differences between

values of the Z vector on successive iterations change by miniscule amounts.

Results With Inaccurate Matrix Inversion

To demonstrate that results are obtainable for specific examples by

merely inverting H in (9), in spite of the fact that H is ill-conditioned

and the inversion was extremely inaccurate, the following data is presented.

This data also illustrates conditions under which the more accurate method

of steepest descent is required.

As an arbitrary example, g(t) was chosen to be the sum oftwo cosine

"waves:

g(t)=A cos (2vflt+01) + A cos (27f
g 1 1t2A2t02)
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with Al = 0.5, A2 = 1.0, fl 0.4, f 2 = 1/6, 01e 0, and 02 =f/3

(Figure la). We assume we know only that the signal is low-pass limited to
B=0.5. Given seven samples at eight times the Nyquist rate over a duration
of 3/4 of a Nyquist interval (Figure 1), a 4:1 extrapolation was obtained
(Figure lb for -l<t<2). With uniformly distributed independent noise samples
(40 dB down) extrapolation was not achieved. With bandlimited Gaussian noise
Ifl<.5), however (Figure 2a), extrapolation was no problem (Figure 2b).

On the other hand, using simple matrix inversion required at least 14 bits
quantization of the input samples without noise (Figure 3), and more than 32
bits with noise (Figure 4).

Though some improvements in the rpOy quantized case were obtained
either by using Levinson's algorithmLo, J or• 1y adding a small constant to
the diagonal elements of H before invertingL4 J, accurate extrapolation with
coarse quantization was obtained only by the method of steepest descent.

The noise samples for Figures 2a, 2b, and 4 were obtained by adding 12
uniformly distributed random variables to produce each of seven independent
normal noise samples, and then multiplying that seven dimensional noise
vector by the lower trianqular decomposition of the desired covariance
matrix, H. When this same example was run using the steepest descent
algorithm 4:1 extrapolation was obtained even at 10 dB S/N
and 6 bits quantization (simultaneously). Only at 4 bits quantization did
the problems observed with the inaccurate algorithim reappear.

Results With Method of Steepest Descent

A variety of examples were used to test the extrapolation algorithm
incorporating the method of steepest descent. To demonstrate the results
using the real bandpass formulation of the algorithm, another arbitrary
sum of two cosine waves was selected. Its parameters are A1=O.5, A2 =I,
fi:1 /25, fý=I/30, 01=0, and O?=':r/3; this is shown in Figure 5. Using the
passband 1 36 <If< /24 and nine samples at intervals of A=O.5 starting at
t=l and terminating at t=5; the signal was extrapolated over the interval
-50 to +65 yielding 251 points of which 150 appear to be valid.

The effect of quantization is illustrated in Figure 6 using the same
example but quantizing the samples at various levels. Figure 6 shows the
results for 9 bits plus sign, 7 bits plus sign and for 5 bits plus sign.
Valid extrapolations with quantizations as low as 4 bits plus sign were
obtained. Extrapolation with bandlimited noise added to signal samples is
illustrated in Figure 7 for rms noise amplitudes of -25 db, -20 db, -15 db,
-10 db and 0 db. Figure 8 illustrates the effect of noise and quantization;
Figure 8a shows the effect of noise and quantization for a particular noise
level and Figure 8b shows a particular sample of noise at various signal to
noise ratios.
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Each alteration of the signal samples - quantization, bandlimited noise,
bandlimited noise and quantization, etc - creates a different signal. The
extrapolation procedure produces a minimum norm least souares estimatvL'] of
the altered signal, i.e., thp8•andlimited signal matching the given samples
that has the minimum energy.L8J

Valid estimation of the signal passband is crucial to the results
obtained. This is demonstrated in Figure 9 where the extrapolated signal
using various passbands is compared to the true signal. It is evident that
the better the estimate of the passband the better the extrapolation and the
longer its extent.

Another parameter of interest is the choice of sampled t'ime interval.[l]
For the same arbitrary signal different time intervals were selected, all
other parameters are unchanged, the results are shown in Figure 10.

Conclusions

Different degrees of extrapolation are obtained with different signals
and different sampling rates. In the lowpass example we used seven
samples at eight times the Nyquist rate, spanning 3/4 of a Nyquist interval.
The extrapolated signal is valid 'or three Nyquist intervals, giving a 4:1
extrapolation. In the bandpass ample we used nine samples at 75 times
the Nyquist rate, spanning 1/9 or a Nyquist interval. The extrapolated
signal is valid for two Nyquist intervals, giving an 18:1 extrapolation.
By increasing the spacing between samples we reduce the extrapolation ratio
and therefore can increase the duration of validity of the extrapolated
signal only slightly. By examining many other examples we are led to the
conclusion that, with a small number of samples of a non-ideal signal,
reliable extrapolation is limited to a very few Nyquist intervals. Thus
spectral analysis of the extrapolated signal must be perfonned by
techniques other than the Fourier transfonr (e.g., maximum entropy).

Cadzow's one step extrapolation procedure is by far the most easily
implemented, in that for extrapolating from M points to N points only an

MxM matrix need be inverted. The probleii that arises is that this matrix is
ill conditioned and thus difficult to invert accurately enough to obtain
reasonable results with imperfect signa.s (having noise and quantization).
We solve this probleml by solving the M equations in M unknowns iteratively
by the method of steepest descent.

Jain and Ranganath[4] have recently described two iterative procedures,
also designed to overcome this same problem. The first is to use steepest
descent to improve the rate of convergence of PapoulisLg] iterative
extrapolation procedure. The second, a conjugate gradient algorithl, is
aimed directly at the final answer, as is our method. However, both of
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their iterative procedures work with NxN matrices rather than MxM matrices,
where N,>M. As they point out [4, Sect. 7.5], Cadzow's method (involving
an MxM matrix, H) produces a minimimi noi.1 least squares solution. Its
shortcoming, the ill conditioned nature of H, we have overcome.
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ACCURACY OF SPECTRAL ESTIMATES
OF BAND-LIMITED SIGNALS

WILLIAM B. GORDON

Radar Division, Code 5308
Naval Research Laboratory
Washington, D.C. 20375

ABSTRACT

We consider the problem of estimating the spectrum of a band-limited

signal perturbed by additive white noise. Sharp bounds on the mean square

errors of linear spectral estimates are computed and expressed as functions

of time-bandwidth products and signal-to-noise power ratios.

1. INTRODUCTION

A central problem in the theory of stationary time series is to estimate

the spectrum of a stationary process N(t) when the given data consists of

samples of s(t) = f(t) + N(t), where f(t) is a deterministic trend of known

functional form. In this paper we shall consider the dual problem: the

functional form of f(t) is unknown, the second order statistics of N(t) are

known, and the problem is to estimate the spectrum of f(t). The signals f(t) I
will be assumed to be band-limited functions having continuous Fourier trans-

forms f(v) which vanish for lvi > W. Such signals are pulse-like, and the

amount of useful information contained in an observation time window depends

"as much on the position of the window as it does on its length. Accurate

spectral estimation requires that the observation time window capture a

significant yortion of the signal energy.

We shall find that when the data is sampled at the Nyquist rate 2W

consistent spectral estimators do not exist, in the sense that infinitely

accurate estimates cannot be obtained from infinitely long data records.
For signals with effective time duration T and signal-to-noise power ratio

ei
(S/N), most of the useful information is contained in a time window of

3
length N /(2W) , where N = (1/n) /(2WT ) (S/N) . For any linear spectral' e ,

estimator there exist signals whose corresponding spectral estimates have

relative mean square errors on the order of (1/N ) and absolute mean squarec

errors which are almost as large as the largest produced by the conventional
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transform with N c data points.

If the data is sampled at a rate higher than 2W, longer time windows can

be effectively used, and the conventional Fourier transform provides a con-

sistent spectral estimator as the data rate increases without bound. If,

however, the time window is fixed, consistent linear spectral estimators do

not e;Cist. Hence, to sumnuarize, consistent linear spectral estimators exist

only if both the data rate and the length of the time window increase without

bound.

The problem of spectral estimation is essentially different from the

problem of spectral peak detection and location, and hence our pessimistic

results concerning the former do not preclude the possibility of high resolu-

tion (supergain) spectral peak detectors, such as have been rueontly proposed

for band-limited signals [5,6,11,12]. However, improved resolution has as a

necessary consequenco a dtocrease in accuracy and dete4ctibility, and we hope

to discusu this matter in subsequent papers.

2. THEX SPACE I1(W)

We shall consider a ulasu 11(w) PV complex-valued band-limitud functions

f E f(t) whose fourier tran.formw i f i(v) are uontinuous and vanish for

:v > W, uo that

+W

i:(t) f f(v) uxp [2'iivt] dv . (2.1)

-W

4.00
A f
f(v) f f(t) axp (-2'iUvt] dt. (2.2)

We shall also require the functions f in H (W) to satisfy M2 (f) < w where the

moment M2 M 2(f) is defined by
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M RI ft2'If t) 12dt f 1i' 12) (2.3)

-00 -W

We follow the utandard tor~ninology of radar and commzunications thoory

[7,141 in defining the signal eneryy L E flf) , mean time M ~' and

ufiu~tivu time duration T, kv 2', (t) by

f f

+00Uf 2itt t fv1

t - 1 (/z~) (L t

Usingy Subuouv SIpLI tecimniquUs We (JeL tho fundameuntaL ineuqualities

(t )1 < 2 1M silln (211Wt) (2.4)
.212t 2 (2-irWL) 2

t< 1-(v/W) W m (f.)

'rho time-bandwidth product 2WT1 will appear fruqumntly in our subsequent

discuussion, one can eatily 4Litablishm the "unuertainty relationl"

2W '1',> 11

which is the sharpest possible inequality of thiS type for H (W).
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3.THE IlRROl L"UNCTILONS ~2  i2 t2

When thu dalta iu unpurturbud by lluise, EM(v will be ostimiatud by dis-
cruto Lranuitormu ut thu type

1.' M i (t)1

una we uhall durivu inuquu1itiuj o~c tho type

tj4 -(v)V M() (v, Lt, Lo(31

WIwU.LU 2 2" (V, i, Li) iu a Curtain uXjpliL±t. ifunctiwil ci the irequeneuy V,
thu uaumplo 1)01L :jout. t ('L .21... ' anLud thu wuiqyhtL

Li- 0" 1~ (1 2 .4. (1 N1. T±hu~u inluqtv1.itiuu Llre uhari, ill the uenull that kur
evwl~y Yivenl Ut ci vul~uec icr V,1 , ) LhurLu t~i a iencticnl i ill 11(M Ifct'
whichl tAe illU141WliLy (3.1) beUUUIIeIU Uln equlit'y. IIence~ the funct.-ionl alb

inLu±prLcdx-~u au the lul.yosL p~uY4:ibIe 4uuiul uvror inl i* (v) (whenl n0itm iri
ubuunL) nuiomuiizJod by the muowunL M 2

Juppunec now that the atau~ iw pol~tuvbud by wlditivu whit~u iw,±iu N (t with
zuvu muuan. 11111 datau uunuiutu of! w~utpluu of u (t) f tt) + N (t) , int. the
probieiu iu tuo utimaLu i' Mv by uwiwu ci the type ) 3 w (L ) .'l'i~ eutii,.'.atu

hiac melanl and biiau equal. to L (v) anld [^V () - ±. (v)l ] q) where L, ma h

Va.L~ilkue ( 13 11iu(L) - 2 ):101 ij2

w~lwre o P ~i 1)2 ur any f inl 11 (W) thu muwmn uquare urror inl thu
u1)u~trul euL;ivwua~ E (i cc) Lu gj.,ven by It (f.) - (biau) 2 -,varianceu, Or

0') I*() - V) 12 + J2 L 1,, 2 (3 ,2)

We dtilne It L) m ul) tit (f) ), whereu time uuprumwwu ls taken over Ulu uut of all
f inl Hi(W) having a givelm va.Luo of M 2- Ih.1ul froil the ulmarpnecnj~ Of U10 inequal-
ity (3.1) wu have

M2 2 9 Q2 NI 2 0 1~~2 ,(3.3)
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2 2
Land for evury s > 0 there exist if in 11(W) for Which R~ (f) > R L.~ Explicit

formulas or (vL,2 will be given in Section 7 forariayvluso

V), t aXnd .

4. TffE PARAME4ITER N

Vo1' UimpliuiLy wo nuw auouuei that the Hample poiiiL sut (t. ) 4 given by

t *n/(2W) where the integer n1 varies over the uoit int -N < n < 14). Thu

nulaber ci. uaipleL will be denoted by N U( - 2N 1, 1) , anld Iv Will. dounoto the

lenyth of the time wiiiduw. heunue N N I 2WI11 anU the timu winduw i4w [-11/2, T/172]

When: tu uunve::Liunal fuuriur tranuform iu Luud -1 (1/2W) uxip [,idiv/W] and

iL Lui:nu OuL Lhiat rQ 2 iuindtijieideiL uf v and is vury olouudy ap1))roximaLud b~y

2Qt 2W/(01 N)

Ilunuu, wliui the daLa iu wqeAm.ld aL the Nyqui~ut ra-le and the uolnvekLiunall

fuolriur L2"'llufiorl11 ic uUl.L WU hlikve

2WM u N
2 2

- N U4 W

~I4t 2iu a uOuVuX f~u(Auio uk N ,wlouuc ::i.iliLaiiu valUe i attained atL N -N

t3W 2 (4.2)

1''i. funU1Il.UiL i L.~iaLot~yiiig t, Lf 2(, M fit and therefroe

wkN W-11 (2Wal. Lu3o.,c~7 (SIN)B 0.Wu ~3)
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Although R2 becomes an increasing function of N when N > N , we have

no right to assume that the same is true for R2(f) for any particular f.

However, it can be shown that for any f in 11(W), I2 (f) eventually becomes an

increasiny function of Nu, and using some gross estm:mattms this can be shown
2to be thu case when N > N

8- U

5. TiHE MAIN IRUSULT

We shall now present our main result (equationl (5.1) below) which shows

that conuistunt spectral estimators do not exist when the noise is white and

the data is sampled at thu Nyquist rate. In the last paragraph wu saw that

when the convuntional fouriur transform is used the error function It2 UvUnt-

ually bocomeo an Increasing function of N au N 4+. Vor each value of N we

shall now choose a seI" o0" weiyhLs L which is "opLiiual" in th uunsee that it

miimuizes thLu riyht-hand side of (3.3) for yiven values of M2 and U2 . These
wo.iylhs will be called "u- ljimtal", 'anld when they are used It2 becomes a

0

muioituniuall2y deureasiny funutiuon of N . We definu

2 2*lim 1(

N -W

and from the dueinitions it is evidunL that

2 2

whore thu illfimltu is taken over the sot of all linear spectral estimates

obtained by ijamwling at thi Nyquist rate. hlence, fur any such linlear sUpctral.

estimate and for any (S > 0 thmure exist functiont f in I(W) satisfying

I 2(f) > t -2

2The calculation of It will be described below. It turns out that

2 2cosh2 ['11N /2]- co.ih2 [iN v/(2W)
it WM (5.1)2 (itN /2) oinhm irN
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This expression vanishes only when v + W, which is a reflection of the fact

that f (+W) ft 0 for all f in 11 (W)

2Let X cdenote tlie smallest possible value of 11 when the conventional

transform i2 used, i.e. , the value obtained by suttiliiq N s- N cin (4.1), and

let X denote the right-hand side of (2.5). Then X is the meanl square error
0 A02

of tho "trivial" estimate f(v) E0, ai-,, it is reasonable to compare R 2 with X

in a neigjhborhood of v - A W. The ratio R 2/X can also be interproted as a

bound onl the relative errors R~ (f/Ii() 12Yor theru exiut f for which
2 21( (U) > R1, and for anly f We have If (\,) 12 < X sinice X Uis the right-hand side

of (2.5). lhence, there are always f for which H (f!)/ if(v)1 exceeds R2/X
2 2 W

1"Wo1 anl eXL1iUintion1 Of hU1 ratios H /X Cand RU/X Uwe draw the followinly conl-

cluuionsu.

Concluiusio 4tl. When the data is samp].ed at thu Nyquist rate every linear

speuctral estimator producesj tnnen square errors havingy thousame order of m1ag-
nitude as tlie laryest p)roducod by a uonvenitional fourier tranisformn with Nc

data po-ints, 4uxcept near v - 4. W where the erroru have the same order of

mag.nitude asu those 1)roducud by the trivial estimate uv 0.

Conculusion 4!2. When the data is samitpled ait the Nyqu~i-st rate every linear

upoctral estimatour produesH relative meain square errors whidch are on the

urdeu. of I/N near v -10 and unitiy neuar v 1 W.
c

0.__0V1IRSAMI'LING

Iii this section we consider the effects of oversamnpliny. That is,

we now s~upplosei that functions of class 11(W) are samnpled at a rate 2kW, k > 1.4

V he derivations of (4.1) and (5.1) require the closeud-form inversion of cur-

taiLn matrices, which, unfortunately, we have beni tillable to effect for the

case of oversampling. Hence, we are presently unable to give a quantitative

descriptio)n of how much useful information is contained inl a fixed time

window when the data rate is increased without bound. However, it canl be

shown that consistent spectral estimators exist only if both the data rate

2kW Lnd the length IV of the time window are allowed to increase without

bouund. (Cf. the di.ncussioii in Section 13.1 of B~lackman and Tukey [4] which

suggests the existence of results of this nature.) Moreover, because of the

pulse-like naturn of the functions f ini I-(W) , it is also necessary to prolong
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2the time window in both directions, since otherwise R will not converge to

its infimuii as T-ýo.

These results can be proved by a reduction to the "previous case" of

Nyquist sampling. For by Shannon's Sampling Theorem every finite linear

combination of values ftn/(2kW)] can be expressed as an infinite linear com-

bination of values f[n/(2W)I.

7. DERIVATIONS

We shall now write Hi J1 2 for the norm M2 (f), and we let (.) denote

the corresponding inner product, so that

(f g f Df(v) Dg(v) dv

-W

where D denotes the differuntiation operator. This norm is chosen because it

can be expressed in terms of physically meaningful parameters, and because
A

the inaps fi f(t) and f-+ f(v) are continuous in this norm. (This last

property is nuL enjoyed by the usual L2 norm.) Hence, there exist functions
Kt = K (s) and u - e (s) in 11(W) which satisfy

t t V VI^
f(t) (f,Kt), f(N) (fe)

hilbert function spaces H fur which the maps f-• f(t) are continuous are called

reproducing kernel hilbert spaces, and the function K(s,t) = K t(s) - (K t,Ks

is called the reproducing kernel. When 1 = N(W) we have

1 isin [2'itW(t-s)] sin(2,iWs)sin(2miWt)Ks 3 st(t-s) 2W s2 t2 (Stst 0)

412

K (t) 1 27irWt - sin2 (21rWt) (t 0)Kt 4.3t3 27rWt ,(t 0.
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i t.

K (t) = K (0) - sin(2'irWt) - (2TrWt)cos(21rWt) (, t 5 0).
0 3 33

K0(0) 2 3 (7.1)
3-

To derive these results we integrate (f,Kt) by parts and compare the results

to (2.1). It is easily seen that Kt(v) is the (unique) solution to
D2Ktt A
D K v) V - exp[2rivt] which qatisfies the boundary conditions K t(+W) 0.

In a similar fashion, one establishes that

212rivt
VtM = 47e 2 t -0os(2'irWt) - (iv/W)sin(27rWt) , (t • 0).

u (0) = (1/2) (W -v2 ) (7.2)

Ie1 112  W2  _ 2)/,(2W) .

From hilbert space generalities we get

2 =(V)-f , N) 1 2

Q = sup 2 112 zt I

= <K,>-> - <J,> 4 (le (7.3)

where the matrix K K(t), and the vector J = J (v,t), are defined by

K nm (Kt ,K ) Kt (tn) (7.4)
m n m

J = (eK ) = eV(t) (7.5)

The results (7.1) - (7.5) can now be substituted into (3.3), ano it is

easily seen that the minimization of R with respect to • requires the

inversion of the matrix K + (2 /M0)I.

12 5I.
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COMPENSATION OF AUTOREGRESSIVE SPECTRAL ESTIMATES
FOR THE PRESENCE OF WHITE OBSERVATION NOISE

STEVEN FAY

Raytheon Company

Submarine Signal Division
Portsmouth, RI 02871

Abstract

The autoregressive spectral estimator possesses excellent resolution properties for

time series which satisfy the "all-pole" assumption. When noise is added to the time

series under analysis, the resolution of the spectral estimator degrades rapidly. The
usual approach to this problem is to model the resulting time series by the more appro-

priate autoregressive-moving average process and to use standard time series analysis

techniques to identify the autoregressive parameters. This standard technique, how-

ever does not result in a positive-definite autocorrelation matrix. Thus, the

resulting spectral estimator may exhibit a large increase in variance. An alternative

approach, termed the noise compensation technique, is proposed. It attempts to cor-

rect the estimated reflection coefficients for the effect of white noise assuming the
noise variance is known. Simulation results indicate that a significant decrease in the

degrading effects of noise may be effected using the noise compensation technique.

I Introduction

Autoregressive (AR) spectral estimation has received much attention lately in many

diverse fields. Although based upon different theoretical foundations, Maximum Entropy

Spectral Estimation, [11 used in seismic signal processing, and Linear Spectral Predic-
tion, [21 used in speech signal processing, aie in practice identical to AR spectral

estimation. The principal advantage of the AR estimate over conventional Fourier-

based spectral estimators is its enhanced resolution properties. [3] However, it has

been shown that much of this increased resolution is lost when observation noise is

added to the AR time series. [4] The reason for the degradation of the spectral esti-
mate in the presence of noise is that the AR assumption, i.e., that the time series can

be represented as the output of an all-pole filter excited by white noise is no longer

valid. [5] Thus, the lower the signal-to-noise ratio (SNR), the more the "all-pole"

assumption is violated, and the poorer the spectral estimate obtained.

The usual approach to this problem is to model the noise corrupted time series by

the appropriate autoregressive-moving average (ARMA) process and to use standard ,

time series analysis techniques to identify the autogressive parameters. [61, [7]

127



This approach estimates the AR parameters jak, k 1, 2, . . . , p} as the solution

of the equations:

A A A A A
Ry(p) R (p - 1) R (1) R (p + 1)

A y(p)
Ry(p+ 1) ( . . . R(2) 2 R (p+ 2)

. (1)

A A A XIARy(2p - 1) R y(2p- 2). . . y(p) P (2p)

where Ry(k) is the autocorrelation function estimate of the ARMA (p,p) process, Yt.
This standard technique, however, does not result in a positive-definite autocorrelation
matrix. Thus the spectral estimator may exhibit a large increase in variance. [8]
An alternative method, termed the noise compensation technique, is proposed. It

attempts to correct or compensate the estimated reflection coefficients for the effects
of the white observation noise. Via this method the autocorrelation matrix may be
easily checked for positive-definiteness by assuring I Ki I< 11, i = 1, 2V . . . , p,

where Kic denotes the noise compensated reflection coefficient estimate.

II. Noise Compensation Technique

The noise compensation technique is now derived.

Assume that we are given a data record iYtV t = 1, 2, . . . , Nwhere Y=XtW
2 e YX t-W

X is an AR process of order p and W, is white noise with variance oW' The Burg
estimate of Ki, the ith reflection coefficient, is

N-i

N-i 2 2

I~i(i-i) (i-i)

t-ii b *1N l•jt:=l 2+ b(') (2a

where 4
i-iA (i-1)

i-I 1)1il A(i-l) ti

Y~ a +i k t+ik (b

It t
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Since K. will be biased due to the noise, one is more interested in obtaining an estimate

of:

= -E [c (i1) b(')K t+i t

" 12

Sltti I jb1

where * indicates the value of the quantity for

Yt X, i.e., no observation noise present.

t

A 1 ~ix-1
If we let A. (Z) 1 + a-zE k

k= 1

we have

Yt+i-
Z-i! -(Z

S1 t

Assuming that the W process is uncorrelated with the Xt process and E(Wt) E(Xt)= 0,
it can be shown that

0e -1) 2 = (i-1)2 2 i+ A (-1) 2 E b 2

E t[ i b.] t'i E elW 2: k k .

( •1 2 Ai-1 )Ai1

E[ i,1)bi-1]= t Ee-l t+i tbi-) + k=2 1 A-)k Ai-1ik"

Therefore,

"- b" 2 _ A(i-1) "-

K
i2 2 2

i ~ E~(i1) ( bi-1)] 2 [ A(i 1)]
+ E bei1 U] + E)

k=1
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In order to relate Kj to the Burg estimate, we take as estimators of the expected

values the following:

N-i

LtE [e -i N--bi L ti btt= 1

N-i (i-i)2

t= 1

1 N-i (i-i)2

Eb [0 1= bt

Note that the estimates have accounted for the (i-i) degrees of freedom lost in esti-

mating fa(i1)'~ which are needed to generate e (i1) b(i1)
k Iti ' t

Then,

1: (i-i) b il

KN-i-(i-i) 2  1~ t i
1 r- ,_) N -i 1 2

e [Ni-i-) -ei + N-i(i ) b t

A C
Letting K. be our compensated estimate, we have,

1

,~ c t= ' k=I

N-i (iI 2  1 - (,1, b1 21
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or finally,

2 e (i-1) b(i- 1 )- ( - i ia 2  1-1 A (i 1 )A-(i-)A- 2 -1i b . i- 2 .N2 .1 rWE ak '-

~ 2 (i-1)1 2 [1u-)
Ia e t~' +b I-2(N-2i 1) 0 1+ a'
[t=1 tk W j = I k

N-i i2To be more realistic, we r'eplace o-2by a a' where 0 < a, < 1. Thus,

N-i i-1.
2 e e(1) b(iI) -2(N-2i+1)aQW a 1 a(i-k

E t~i t i I.1-
A C t__1 i=(

e N - i + b -2(N-2i+1) ai akt-1)2

1k=1

A
It is seen that KJc is not constrained to be between -1 and +1. To maintain this

range, we will need to choose a I carefully. In the simulation examples to follow,
we choose a as:

1

(p-i) a MAX + aMIN (i-i)
a-p (4)p-i

where 0 < aMIN < <MAX< 1.

Thus, ae. decreases linearly with i, which reflects our confidence in the estimates of the1

higher order reflection coefficients,

To demonstrate the capability of the noise compensation technique several simula-
tion examples are given. The first example utilizes data composed of an AR(4)

process [91 with power spectral density given in Figure 1 and white Gaussian noise.
The SNR is 15 dB. 100 realizations of the conventional AIPMA approach, which uses (1) withl
"the autocorrelation estimate

N-kA

Ry (k)=N t YtYt +-k'

are shown in Figure 2. In Figure 3 the noise compensated estimates are plotted.
Note that p = 8 was used since p = 4 did not rusult in adequate resolution of the spectral
peaks. Comparing the figures, we see that not only is the variance of the noise com-

pensated spectral estimator less than that of the ARMA approach but the spectral
peaks are clearly visible whereas in the ARMA case only one peak is seen..)
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Finally, a simulation was conducted for two equi-ampV lude sinusoids in white
Gaussian noise. The peak of the spectral estimate was normalized to 0 dB and the
true spectral lines are indicated by arrows. The results are shown in Figures 4 and 6.
A large improvement is noted.

III. Conclusions

The noise compensation technique described in this paper offers an alternative and
possibly better method than the conventional ARMA approach of reducing the effects of
white observation noise on the autoregrossive spectral estimator. When used properly,
the large bias error introduced by the noise can be significantly reduced.
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ORDER DETERMINATION FOR AUTOREGRESSIVE SPECTRAL ESTIMATION

M. KAVEH AND S. P. BRUZZONE

Department of Electrical Engineering
University of Minnesota
Minneapolis, MN 55455

Abstract

A method related to Akaike's Information Criterion for determining the
order of an autoregressive (AR) spectral estimator is discussed. Examples
are shown that compare the performance of this method with that of the well-
known AIC.

Introduction

The trade-off between the bias (or resolution) and variance of a spec-
tral estimator is the central issue in spectral estimation by any method.
For the traditional (Blackman and Tukey type) spectral estimators, this
trade-off is reflected in the choice of the spectral window type and the
maximum lag of autocorrelation function used. This subject, referred eo as
window carpentering, is discussed in detail by Jenkins and Watts [1], and is
straightforward because resolution is well-defined in terms of the spectral
window bandwidth.

With the popularity of data adaptive (notably the autoregressive (AR))
spectral estimation methods, similar resolution-variance trade-offs are in
order. Specifically, well-defined methods are needed to determine the order
of the (AR) spectral estimator for a given data sample. Furthermore for
practical applications, these methods need to be on-line and as much as
possible objective in nature. This problem is complicated, however, due to
the data dependent nature of the resolution of the AR spectral estimator
(e.g., no well-defined window bandwidth). Therefore, the question of order
determination for the spectral estimator seems to be best posed as a proce-
dure for obtaining a compromise between the AR model fit and the variance of
the estimated AR parameters as a function of the model order.

Akaike [2, 3] and Parzen [5] have recently introduced some methods for
automatic determination of orders of autoregressive processes. One method,
based on Akaike's Information Criterion (AIC), has gained special popularity.
In this paper, we follow the derivations on which AIC is based, introduce
appropriate modifications to account for practical estimation procedures and
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derive a modified information criterion designated the Conditional AIC
(CAIC). Finally we present the results of a number of numerical simulations
that compare the performances of AIC and CAIC for spectral estimation.

Akaike's Information Criterion

Akaike derived his information criterion, AIC, as an estimate of the
asymptotic relative goodness of fit of the model to the observation. Although
his derivations were based on information theoretic arguments, the resulting
parameters were the same as the maximum likelihood estimates. In this section
we review the steps involved in obtaining AIC [3] as they pertain to the
derivation of the new criterion. We assume the time series to be described by

L
xt= a aixt-i + ut t=O,. .. N ()

i=l U,

X_L,...,x0 = 0

where ut is zero-mean white and Gaussian and L is to be determined. Through
asymptotic arguments, Akaike defines an information criterion, related to the
maximum likelihood of the estimates of ai, ai, as:

AIC(A) " (-2)ln (maximum likelihood)

+ E N" I'-All2  (2)

where E• denotes asymptotic expectation, A and A are L x 1 vectors of the
coefficients ai and their estimate S ai" The practical AIC which is related

to the full-information likelihood function of a Gaussian process is then
given by

AIC(L) - N ln (MLE of innovation variance) + 2L (3)

and the order L is chosen that minimizes AIC(L).

The New Criterion

Since the exact maximum likelihood (full information maximum-likelihood)
estimates are generally not available, the conditional MLE one based on Yule-
Walker equations or Burg's algorithm, of the innovation variance are normally I
used in (3). We propose using the conditional maximum likelihood (CML) func-
tion in (2). This function is based exactly on the available data and we
believe is a more sensitive indicator of the behavior of the estimates used
in practice. Thus, in the following the CML estimate of A and its covariance
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function are considered, in order to obtain tractable expressions for (2).

The conditional (partial information) likelihood function for the time
series in (1) is given by:

L(A,' 2'xlV''x L) 1 N-L exp (4)

(2Trcu )

2I

where a is the variance of the innovation sequence ut,U

CT . a1,-al,-a 2 ,..., -aL] and

(5)
N

Dij Xk-i+1 XkjE+
k=L+i 

" 

!

Furthermore, the CML estimation of a 2 is given by:

0 C DC/(N-L) (6)
U _

and a lower bound for the variance of the estimates of a. follows from the
Fisher's information matrix to be [63

A 11 2A 71
var[ai] a> A au (7)

where Aii is the diagonal element of the inverse of the (L + l)-sau~ple covar-

iance matrix of xt. It can also be shown [6] that for an AR model

a 2Aii A , thusU -
(8)

^ I
var [ai] >
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We now proceed to define an expression for (2) based on the CML estimates of
A and Ou2 . The expression for the CML given in (4) is now substituted in (2)
for the maximum likelihood and using (8) for the second term in (2) and
(N - L) for N we have:

CAIC(L) = (N - L)ln(2fO u) + (a - 1)L (9)

The factor a > 1 is included to account for the asymptotic nature of the
criterion and the fact that (8) is a lower bound for the variance of ai. A
similar parameter was also suggested for AIC [7] and in (3] Akaike discusses
a possible approach for choosing a. Since CAIC(L) as given by (9) is depen-
dent on the variance of xt, the test is standardized by introducing a normal-
ized innovation variance so that

CAIC(L) = (N - L)n[cY u/(var x )]

(10)

+ (a- l)L

Thus CAIC(0) 0. The factor a is chosen to give more or less weight to the
error in the estimation of the parameters. In other words, resolution can be
increased at the expense of the variance of the estimates by decreasing a.
We have found, empirically, values of 3.5-4 to give the most stable and
reasonable indication of the order.

Simulation Results

We have tested Lhe performance of CAIC relative to AIC on a number of
time series models reported previously. The data included normal as well as
uniform distributions. The estimates were based on CML (least-square) and
Yule-Walker methods. In the great majority of cases, CAIC performed as well
or superior to AIC. Examples of these can be found in [8]. Some estimated
spectra based on orders determined by AIC and CAIC are also shown in Figures
1-3. Yule-Walker equations with autocorrelation function estimates given by

1 N-i
r N xj xj+i

j=l

were used. The examplc shown in Figure 1 indicates the relative stability of
CAIC. Figure 2 shows that the model order chosen by AIC results in spurious
peaks, while giving higher peak resolution than the CAIC based one. Figure
3 shows that an increase in white noise level increased the AIC order to the
point that spurious spectral peaks became pronounced while CAIC remained
nearly the same, showing the relative stability of CAIC.
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Conclusions

Order determination for the AR spectral estimator was discussed. A new
order indicator was introduced that is closely related to the AIC method of
order determination for AR processes. The new criterion, CAIC, fits the
practical estimation modes more closely and was found to be a relatively sta-
ble indicator of the order which trades off resolution and variance of the
estimates.

References

1. Jenkins, G. M., Watts, D. G., 1968, "Spectral Analysis and its Applica-
tions", San Francisco, Holden-Day.

2. Akaike, H., 1970, "Statistical Predictor Identification", Annals of Inst.
Stat. Math, Vol. 22, No. 2.

3. Akaike, H., 1974, "A New Look at Statistical Model Identification", IEEE
Trans. on Automatic Control, Vol. AC-19, No. 6, December.

4. Akaike, H., 1977, "A Bayesian Extension of the Minimum AIC Procedure of
Autoregressive Model Fitting", Research Memo No. 126, The Institute of
Statistical Mathematics, November.

5. Parzen, E., 1975, "Multiple Time Series: Determining the Order of
Approximating Autoregressive Schemes", Tech. Report No. 23, July, SUNY
Buffalo Dept. Computer Science.

6. Kaveh, M., to be published, "Order Determination for Least-Squares
Predictor Identification".

7. Bhansali, R. J., Downham, D. Y., 1977, "Some Properties of the Order of
an Autoregressive Model Selected by a Generalization of Akaike's FPE
Criterion", Biometrika, Vol. 64.

8. Kaveh, M., 1379, "A Modified Akalke Information Criterion", Proceedings
of the 17th CDC, January.

1

" i'



RA (CRIC)
C._ RR (RIC)

C-)

Ci

C D

a_CD

0 

I
0.0000 .1000 .2000 .3000 .4000 .5000

FREOUENCY (HZ)
Fig. 1(a)

RR (CRIC) - ,

o R (RIC) 0

LU

FLIN

C) N=00 AI=2 IC81144

2) 
N-

O. 0000 • 1b00N=500 , .AC2 AI09, 00=8.50

FR 14NC4 (Z



RR (CRIC)
RH (RIC)=0

Ld

LU

O,•O00 .t0 .2000 3000 .4000 .5000

FREQUENCY (HZ)
FIGURE 2. Log power spectrum of xt sin(.6rrt+30 ')+0,707sin(.2¶,t+60)

2t

+n, .25; N=100; CAIC=6, AIC=2i0.

RR (CRIC)-
RR (RIC) -

H-

LUCLd

LUi

CD -if2F \ -- 7-

I•!;•' " Doo • .2000 sowo .4000 . 000

FREQUENCY (HZ)

FIGURE 3. Log Power spectrum of xt=sin(.6it+300 )+O.707sin(.2lit:+6 0 ')
2

-c• +t; On=.316, N=I0 CAC=5, A!C-I5. .

:it

145



I
I
I

)

p/b - _



DIFFICULTIES PRESENT IN ALGORITHMS FOR DETERMINING THE RANK
AND PROPER POLES WITH PRONY'S METHOD

MICHAEL L. VAN BLARICUM

Effects Technology, Inc.
5383 Hollister Avenue

Santa Barbara, California 93111

Introduction

This author presented a paper [I] at the 1978 RADC Spectral Estiimtion
Workshop which reviewed the algorithm of Prony. This Prony algorithm is used
to extract a system's natural resonances and associated residues from tran-
sient response data. This procedure has great potential use in the analysis
of transient electromagnetic response data such as those from EMC and EMP
testing and from transient radar scattering.

Last year'- paptor addressed the algorithm and discussed the problem of
noise and its effect on Prony's method with several solution methods being
suggested. In addition a few examples were given. This paper will focus on
the specific problem of the determination of the order of the system being
analyzed. That is, it will address the question: How do you a priori
determine how many poles are contained in the response data?

The process of extracting the natural resonances and their associated
residues from a transient signal has four main steps as shown in Figure 1.
The derails of these steps were discussed in reference [i]. A brief review
is given here.

The first step is the determination of the order of the system. At this
step one decides how many poles the system response function has so Lhat the
proper model, order can be obtained. It has been found, through trial and er-
ror, that if the order of the system is underestimated then the extracted
poles will deviate substantially from the true poles. Similarly if the order
of the system is overdetermined the algorithm produces extraneous poles. The
presence of the extraneous poles causes the residues of the true poles to be
inaccurate and also results in unnecessary computation time. In addition, as
will be shown, attempting to solve an overdeaermined system will result in an
ill conditioned matrix and present numerical problems. The presence of noise
in data makes the determination of the system order a very complex problem.
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Once the order of the system has been determined the coefficients of
Prouy's difference equation must be solved. This step basically involves the
solution of a linear matrix equation. The degree of difficulty of this step
depends on the ,,'se level in the data and on the proper determination of the
order of the system. Generally this step is solved using 0 least squares
method. However other solutions, such as recursive techniques, may be more
applicable depending on the condition of' the data.

Once the difference equation coefficients are obtained the roots of an
Nth order polynomial, N being the system order, must be found. Many root
finding routines exist but Muller's method [2] appears to be the optimal
method. While this is a key step in the procedure It is totally dependent oni
the accuracy of the coefficients which were obtained in the previous step.

The final step is the solution of the residues which are associated witih
the system poles or singularities. These residues are obtained by solving a
simple linear matrix equation. Generally a least squared error (L2 norm)
solution is used. However, Schaubert [2] hat shown that if the uniform norm
(L. norm) solution is found the accuracy of the residues is much better. The
L, norm solution does require tihe solution of a nonlinear problem and hence
requires more computation time. In many problems, such as target identifica-
tion, the residues are not ewvti required and hoencl this is certainly not a
critical steLp.

It is this author's opinion Hiht the first step, the determination of the
system order, is tihe key step in tie total procedure. Up to this time many
methods have been used to determine tihe order but: they either break down when
noise is present or they are dependent on trial and error or the intervention
of the user. For analysis of 'assive amounts of data, as in the case of 1EMP
data, or for radar target identification, a totally automated method is a
must. The remainder of this paper will discuss the problem of order determi-
nation. Some specific techniques will be discussed and numerical examples
will be presented. Finally specific recoimmiendations as to the direction of
future research in this area will be made.

Mathematical Prel.lminaries

In order to discuss the different methods for determining the order of a
system response before attempting to extract the resonances, it is necessary
to review some of the details of the Prony algorithm. The details of Prony's
method can be found in [1]. The notation used in [1] will be followed here
for easy reference.

"The premise used in applying Prony's method is that the system to be
modeled can be represented by a finite sum of complex exponentials as
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where R(tn) is thle system response, the Si are the complex poles and the Ai
are the corresponding residues. Expression (1) is written in discrete data
form where it has been assumed that the M samples are taken at equal time
increments At. Equation (1) is M nonlinear equations in 2N unknown.

The solution of the Si and the Ai in (1) is based on the fact that the
Rn must satisfy a difference equation of order N which may be written as

N>1 Rp+k- 0, k - 0, 1.... , y-1 , (2)

where y is the value of M-N. This difference equation is referred to as
Prony's difference equation. Equation (2) is usually rewritten by defining
'IN equal to 1 so that the equation has the form

N
a p Rp+k "N-_k (3)

If 2N data samples are used, then equation (3) can be solved exactly for the
Sis. If more than 2N samples are desired, then one can use a least squared
error fit to (3). It is the solution of this equation which is the second
step of Figure 1 and which yields the coefficients, a, for the polynomial of
the third step. For convenience equations (2) and (3$ can be rewritten in
matrix notation as

A x - b. (4)

The matrix A is filled with the discrete response samples R.)+k and is either
of dimension y by N+I for equation (2) or y by N for equation (3). For equa-
tion (2)thetvector x is of length N+l and contains the unknown coefficients
a and the vector b is equal to zero. For equation (3) the vector x is of
length N and the vector b is of length y.

In order to obtain a proper solution to either equation (2) or (3) it is
necessary to know the value of N. This is equivalent to saying that for the
matrix problem defined in (4) we need to know the rank of the matrix A. If
N is picked too small then the matrix equation is underdetermined and will
give wrong answers. If N is picked too large then the matrix A is rank
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defilciut and will likely cause the matrix to be ill conditioned.

The Eigenvalue Method

This author [41 has presented a method for determining the rank of the
matrix A based on its eigenvalues. The details can be found in reference
[4]. The basic theory is that the response, Rn, of a system which contains
exactly N resonances will satisfy the difference equation (2) exactly. I
Another way of looking at the problem is that there are exactly N mode
vectors for an Nth order system where the mode vector Xj is defined as

x - zj 1
I

Z 0

zj .

S jAt
where Zj- e . It can be showxi that the matrix A is imade up of a linear ;

combination of these mode vectirs. For the least squares or pseudo-inverse ]
solution a square, (N+l) by (N+l) for equation (2), matrix c1 is defined as

ATA

This square matrix I0 will have N+I eigenvectors and associated eigenvalues. •I
The N mode vectors defined by (5) will be linearly independent and will have
projections on N of the eigenvectors of the system. There will be one
eigenvector which is orthogonal to the N mode vectors and its eigenvalue will .
be zero. Hence, the process for determining the order of the system is to
fill matrix • to some dimennion M by M. The corresponding M eigenvalues of

the system are found and checked to see if one or more are equal to zero. I
If there are L eigenvalues equal to zero, then N would be equal to M-L. If
L is not equal to one, then the matrix • is recomputed to order N+l by N+l,
and the eigenvalues are regenerated. This final step is done because the
eigenvector corresponding to the zero eigenvalue is the vector of coefficientsI
of the difference equation.

This procedure works fine as long as the system response data does not

contain noise. With noisy data the theory starts to fail because the system
is no longer exactly the sum of N exponetials. Reference [41 shows that for .
small levels of noise with variance a2 the N+l eigenvalue for the •matrix

should be equal to ya2 instead of zero.
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Eli envalue Examples and Difficulties

Figure 2 shows an example of the thirteen eigenvalues for a twelve pole
system, Note that for the no noise case, the thirteenth eigenvalue is less
than 10-10 or practically zero. For the noise case the thirteenth eigenvalue
is equal to about 3 x 10-3. The value of yo 2 for this case is 2.5 x 10-3.
From the example of Figure 2 it appears that rhere should be no difficulty
in deciding what the proper order of the system is even in noisy data. This
is theoretically the case. However the following example shows some inherent
difficulties.

Table 1 presents the results of twenty Monte C'arlo trials performed for
seven different sets of noisy data. The signal to noise ratio ranged from
3.3dB to 35.4dB. Note that while the predicted value of the N+l eigenvalue
was very close to the mean of the actual. numeriL.ally determined value, the
standard deviation of the po.es,.j is very large when the noise level is high.
fence, while the proper order was determined, the poles resulting from this
model order were in error. Experience has shown that picking a higher order
modcl will give better accuracy to the resulting true poles. However there
will be extraneous poles also present which, if nothing is known about the
system, will potentially be hard to distinguish from the true poles. Hence
while the proper rank of the 4 matrix has been found the resulting answer
will not necessarily be that which is sought. In addition further examples
have shown that as the noise level increases it is difficult to determine
what is the exact cutoff point. That is, the difference between the N and
the N+1 eigeuvalue is so small that a true cutoff point is difficult to
determine. This problem is shown graphically in Figure 3.

Preliminary efforts have shown that the use of recursive techniques to
solve the matrix equation once the proper rank has been determined reduces
the large errors described above and shown in the e(ample of Table 1. The
determination of the proper rank is still a problem wheti faced with the
difficulty illuminated in Vigure 3.

The HFTI Method

Another approach to the determination of the rank of the system of
equation (3), where the A matrix is y by N, is given by the HFTI algorithm
[5]. The 1IFTT algorithm, described in detail in [5], is designed to speci-
fically to give a least squares solution to a rank-deficient problem by
using Householder transformations. The method transforms the matrix--vector
combination [A;b] of (4) to a matrix-vector combination [R:c] using premulti-
plying Householder transformations with column interchanges. All subdiagonal
elements in the matrix It are zero and its diagonal elements satisfy Irii • .L
Iri+l,ri+ll, i = 1 ..... , k - 1, where Z = min[*y,N]. The proper rank of
the system can be found by comparing the diagonal. values, nriil, and looking
for a cutoff as was done for the eigenvalues of the previous section. The
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subroutine HFTI will accept an input parameter T which it compares with the
diagonal elements to determine a new pseudorank k for the system. The
pseudorank k is defined as:

k = i, when lriiI > T and

Iri+l1 i+l1 < T

The method then calculates a minimal length solution vector x for the problem
defined by the first k rows of [R:c].

Figure 4 shows an example of the resulting diagonal elements Iriit. HFTI
was used on a fourth order system presented by a rank deficient matrix of
dimensions 20 by 6. The figure shows the results for both clean and noisy
response data. The problem here is the same as in the eigenvalue method.
That is, it is difficult to know what value of T should be specified so that
the proper rank of the system can be determined.

Summary and Conclusions

The two previoup sections briefly discussed two methods for determining
the order or rank of a system so that the proper poles can be extracted.
While the methods are basically straight forward the actual application of
the method is limited if noise is present in the data. The problem which
now must be addressed is how does one determine the optimum cutoff point for
the eigenvalue method or the T parameter for the HFTI method. It appears
that numerical parameter studies need to be run to get a better feel for

this procedure. Preliminary results bode optimistically on obtaining an
optimal cutoff procedure so that the entire resonance extraction procedure
can be automated.
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TABLE 1. Results for Example 2:

R(t) - e SIN(rt), y 50, At = 0.]. S

Standard Standard Deviation of Pole Theoretical N + 1 Mean Value of N + 1 Signal to
Deviation Real Part m r Eigenvalue Eigenvalue Noise Level
of Noise Part dB

a

0.04 0.800 0.566 0.08 0.0836 3.3

0.03 0.566 0.311 0.045 0,047 5.8

0.02 0.371 0.179 0.02 0.021 9.4

0.01 0.187 0.085 0,005 0.0052 15.4

0.009 0.167 0.077 0.00405 0.00423 1 16.3

0.005 0.094 0.043 0.00125 0.00131 21.4
40.001 0.017 0.009 0.5 x 10 0.52 x 10 35.4

DETERMINATION DETERMINATION
OF OF DIFFERENCE FIND

SYSTEM ORDER EQUATION ROOTS SOLVE
--- - COEFFICIENTS -- - OF RESU-E. O

HOW MANY ---------- POLYNOMINAL
POLES? AX - b

FIGURE 1. The Elements of the Extraction of Natural
Resonances and Associated Residues from a
Transient Signal.

153



103

10

I0-I

10-2

W
0 -

w 10 - 4

z I

1~ 0-11

10-6

10-8 w-, NO NOISE
, a-- r 0.005

10-9

10-10.

1 3 5 7 9 II 13

EIGENVALUE NUMBER

FIGURE 2. Resulting Eigenvalue from Response

Generated Using 12 Poles for Non-
Noise Case and Noise with 0=0.005,
y=lO0.

154

- ' • - - :- • ,• . _-r: .-- ' ' " " '" : i .:, ' "_" "_ _ _ _ _ _" - -"-. • - : , - , • • ' • ,' • • • • :

. ;,. • -•--.•-•-_•--.V ..... '. - ,, -••



".,' , x. -77.. , -. ."

X-Clean Data x - No Noisei

0-Noisy Data 0- Noisy Data

10 ® 4 0 0

e g a I10 
3

Nominal N+I
e igenvalue 10

S(dotted lines 10

show possible 0
• standard de- Ir I 19

viation of

nominal
elgenvalue)

10-2

10-4

-'+--- - I .... ti 1 2 3 4 5 6
1 2 3 4 6 1

I
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A UNIFYING MODEL FOR SPECTRAL ESTIMATION
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Abstract
The Fourier transform of a band-limited time function can-

not be determined from finitely many observations. For this
reason spectral estimation necessarily involves the substitution,
for the original Fourier transform, of a function that is so de-
termined. Some approaches make explicit the nature of the sub-
stitution, by assuming that the transform has a fairly simple
form (a rational function, for example), whose papameters can be
computed from the data. With other methods, such as thoe that
rely on time-domain extrapolation or on iterative approximations,
"it is not always clear what is the substitution that the method
is introducing.

In this article we discuss an explicit model, or substitute,
for the Fourier transform, based on over-sampled data. Our opti-
mal windowing or modified DFT model is seen to coincide with the
minimum energy estimate of de Figueiredo. Upon examining the
methods of Cadzow and of Kolba and Parks, we find this same model
implicit J~i both techniques.

Introduct ion

According to the samoling theorem, a band-limited signal of
finite energy can be reconstructed from uniformly spaced samples,
provided the interval between sample times is small enough. In-
deed, if x(t) is a complex function of a real variable t, of
finite energy, and its Fourier transform,

X(w) jx(t)eiWtdt, (1)

157 1
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is zero for w not, in the band W = [-a, a], then we have that

X(w) A 7, x(nL)einw, wj <_ TT/A, (2)

for any sampling rate 0 < A < 7/a. Taking the inverse Fourier
transform, we get, for all t.

x(t) =_ x(nA)[sin(n u -ta)]/(n--t,/A) (3)

In practice, because our observations are necessarily limit-

ed to some finite interval of time, say [-d, d], only finitely
many of the Fourier coefficients, x(nA), will be known. As has
been noted by Levi [41, an arbitrarily band-limited signal can be
made to pass through anyfinite set of points. Consequently, any
procedure that estimates X(w) from finitely many observations

introduces a subsitute, or model-, for X(w) that is determined by
the data, or what is the same thing, makes additional assumptions
about X(w) which make it possible to reconstruct X(w) from our
limited knowledge. These models for the Fourier transform to be

estimated are, at times, explicitly described, as in [21, where
de Figueiredo uses the criterion of minimum energy to derive a

model using splines. Other explicit models.appear in the host of
articles on rational approximation and ARMA schemes. With other

approaches, such as those that rely on time-domain extrapolation
or iterative approximation, the exact nature of the model being
introduced is not always clear. Nevertheless, the operative mo-
del is the esserce of the procedure and must be clearly under-

stood before that procedure can be adequately compared with other
methods.

In this article we propose an explicit model for the estima-

tion of the Fourier transform from over-sampled data. We derive
it as a best approximation to the unknown Fourier transform, and
then note that it can also be derived as a minimum energy esti-
mate, as was done in [2]. One can also view this model as a

windowing procedure, that uses coefficients that are optimal in
the sense de+.2ribed below, and are dependent upon the data. We

then turn Lo a study of implicit models, dealing specifically
with the recent work of Cadzow [1] and of Kolba and Parks[3].
As we discover, the extrapolation suggested by both of these me-

thods can be by-passed, and if this i- done, the operative model
becomes the same optimal windowing prosented earlier. It is in
thi:' sense that our model is described as "unifying".

IA
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An Optimal Windowing Model

Suppose that our data consists of the values x(-MA),....,
x(MA), where 0 < A _< n/a . The truncated DFT model for X(w) is

M

X(w) A E X(jA)eIc1w , wI < o (4)

This model is relatively easy to compute as an FFT and .is
optimal, in the sense that it is the polynomial of the form

M
A _ a(jA)eiAw (5)

-M
that minimizes the mean square error

en/A M i~lJ IX(w)-A Z a(jA)ei AwI~dw (6)
r/A -M

However, this model can be Improved, if we know that the data is
over-sampled, and that X(w) is zero off the band W = [-oa],
where a < n/A , It is reasonable then to minimize not (6), but

a M .A

JV X(w) - A E2 a(JA)el j wI dw .(7)

-M

According to the orthogonality principle (see, for example,
[5], P. 197), we must then have '

S(x(w)- Z a(JA)e iiW)(e-k~w) dw = o (8)

' -M

for k= -M,...,M . It follows that the a(jA) must satisfy the
system of linear equations

M

x(kf) can a(Jb) sin( (k-J))l(k-J)A(9)

for k =it is a happy result that these optimalcoefficients are compietely determined by the data. When the •
model for X(w) is (5), with coefficients obtained from (9), we
shall say that the modei is the modified DFT (MDFT). This MDFT
model can be viewed as a data-dependent windowing, with optimal

coefficients.
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In the recent article [2] de Figueiredo presents a spline
approximation technique for spectral estimation that employs a
minimum energy criterion. It is easily verified that our MDFT
model coincides with his, and so has minimum energy, subject to
the data and the band W. The reader is also directed to the
article [4], where the same model is discussed in a somewhat
different context.

Two Extrapolation Methods and their Implicit Models

In [1] Cadzow suggests that we by-pass his sometimes
slowly converging iterative procedure for estimating the Fourier
transform and adopt a one-step extrapolation method. Involved
in this method is the assumption that there is a function z(t),
of finite energy, satisfying the integral equation

x(t) = Id z(s)sin((t-s)a)/(t-s)rr ds , (10)

whose Fourier transform agrees with X(w) on the band W. Knowing
only x(-MA), ... ,x(MA), we approximate the integral equation
by a system of linear equations

M

x(kA) = A E z(JA)sin((k-j)A)/(k-j)A ()
-M

for k = -M,...,M Once we have the values of z(jA), we can
extrapolate x(qA), Jq1 > M , using (11), with qA replacing kL
The Fourier transform is estimated from a sufficiently expanded
set of samples and extrapolations. However, we may proceed
somewhat differently. Having computed the solution of (11), we
are able to write the X(w) in closed form; using (2) and (11)
and rearranging terms we obtain with h(t) = (sin(at))/7t

M
X(w) = A E z(jA)[A h(nA-jA)e]e , (12)

-M -

where the term in square brackets is the Fourier expansion of
the function that is 1 on W and 0 off of W. So the operative
model is the MDFT. Of course, if the extrapolation is used,
the MDFT model is only approximated, due to the truncation that
necessarily results.

Let us turn to the extrapolation method of Kolba and Parks
[3]. Consider equation (3), with t = kA . We then have , for each
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fixed value of k,

x(kA) = 2 x(nA) sin((kL-nA) o)/(k-n)TT (13)

Viewing (13) as the inner product of two sequence, (x(nA) ]
representing X(w), and (sin((kA-nA)a)/(k-n)rr], we see that the
second sequence represents the linear functional that extracts
the kA-th coefficient. Knowing only x(kA), k = -M, ... , M sug-
gests that we approximate fm, Iml > M, by a linear combination of
the fk, Ikl < M, labeled f'm. So

M
fl = -M bm fj (14)
m j=- m~j

We seek optimal coefficients, so applying the orthogonality prin-

ciple, we get

M

sin((mA-kA)a)/(mA-kA)fl j=M bmj sin((JA-kA)O)/(jA-k4)TT (15)

for each k = -M, ... , M. If we let bm be the resulting solution
vector, the best extrapolation of our data is then given by

x(mA) = bm. y, Iml > M (16)

where y is the vector contair)ing the data, x(kA), Jkl < Y. This
is the extrapolation method due to Kolba and Parks [3]- it is an
easy exercise to show that it is the same extrapolation obtaln-
able from the MDFT model. The extrapolation can, as before, be
by-passed, and X(w) be obtained directly. The model is once
again the MDFT.

Conc lus ion

The MDFT model presented here is an optimal data-dependent
windowing, as well as the minimum energy estimate. It is also
the implicit model being used in the one-step method of Cadzow,
and in the best linear extrapolator procedure of Kolba and Parks.
By uncovering the Implicit model we are able to provide further
justification for the use of each of these methods, as well as to
make unnecessary the comparisons of these methods that focus
needlessly on superficial differences in development , while
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ignoring the common model.

It is also possible to derive the MDFT model using a maxi-
mum entropy criterion, or as a moving average. The details will
be presented elsewhere.
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Abstract

Burg's algorithm for Maximum Entropy autoregressive spectral estimation is analyzed for the cases
of one and two complex sinusoidal signals in additive white noise. For the latter case are found two
biases which can account for the line splitting and line shifting that occur in simulation studies when
the SNR is very high. These biases vanish completely if the two complex sinusoids are in phase quadra-
ture at the middle of the data record; if there is an integral number of half-cycles of difference fre-
quency contained in the data record, then the spectral estimate will be biased although the effects be-
lieved to cause line-splitting will be eliminated. Results of simulation studies to support these
conjectures are presented.

1. Introduction

The Burg algorithm for the autoregressive spectral analysis of time-series data [1,2,3], sometimes
referred to as the maximum-entropy method (MEM), is known to be inappropriate for the case of sinusoidal
signals in additive white noise. This inappropriateness had been demonstrated both theoretically [4-6]
and in practice [7-9]. A theoretically correct model [4-6] for the generating process for an N-pole
complex sinusoidal signal in additive white noise is an N-pole, N-zero network with identical gain
weights in its feedback (pole) and feedforward (zero) parts, being excited with a white-noise input (see
Fig. 1). Autoregressive analysis models the generating process for the data as an all-pole network
excited by white noise. Since a zero in the generating process network can be simulated exactly only
by an infinite number of poles, it is clear that when autoregressive analysis is used, in principle an
infinite set of either autocorrelation or time series data must be used in order to achieve correct re-
sul ts.

Fougere [9] has stated that, in the high signal-to-noise ratio (SNR) case, the Burg algorithm is
overconstrained. In the case of sil ',!;fion studies, this overconstraint causes errors in the estimated
frequencies of spectral lines and the false splitting of spectral lines known to have been generated by
a single pole (or a pair of poles, in the case of real signals). Fougere has developed an algorithm
which avoids this phenomenon, but the algorithm is based on a gradient-search technique which lacks the
intrinsic efficiency of the unmodified Burg algorithm.

In spite of its known li:;iitations, the Burg algorithm is often used because of its computational I
efficiency. This report explores analytically the expected response of the Burg algorithm to time-
series data comprising one or two complex sinusoids, with and without the presence of additive white
noise. It is shown that only in very special cases does the Burg algorithm lead to the same results as
are achieved when the true autocorrelation functions of the signals are known.

2. Review of Autoregressive Spec tral iAnalysis

Autoregressive spectral analysis is based on the idea that, if it is somehow possible to desiqn a
feedforward (all-zero) filter which has as its input the data to be analyzed, and has as its output I
random white noise, then the power spectrum of the input data is given by the reciprocal of the power
transfer function of the 'il!er. Since this filter accounts for all the predictability inherent in the
input siqnal and has as it,. output only unpredictable random white noise, it is often referred to as a
prediction-error filter (PEF).

There are several well-known techniques for estimating the PEF corresponding to a given set of data.
When only amplitude time-series data are available, most of these depend upon estimates of the auto-
correlation function derived from the time-series data. The Burg algorithm, however, attempts to
avoid possible biases or inconsistencies in such estimates of the autocorrelation function by deriving
an estimate of the PEF coefficients directly from the data.

In this report the algorithm for generating the PEF when the true autocorrelation function is known
is reviewed in Section 2.1 and the Burg algorithm is reviewed in Section 2.2. The results from these
sections are then used to generate the sets of PEFs correspondinq to the cases of one and two complex
sinusoids in additive white noise, and the properties of these sets of PEFs are compared and contrasted.
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2.1 The Known-Autocorrelationl KA_)_Algorithm [1O,1].

Let it be assumed that N equispaced samples R(n) of the complex autocorrelation function have been
given, for n=0,l,2_.. N-l, where N may be finite or infinite. It is assumed that the Nyquist sampling
criterion has been met. Then the system of equations to be solved is

,M

- R(k-m),t(m,M) = P(M)(S(k) 0 < k < M (1)
m=0 0; M N-I

where the ,(m,M)s for m=0,l,2,..,M are sets of PEF coefficients, each value for M denoting a different
set; the P(M)s are called the ou'tput error powers and are real; and ýS(k)=l if k=O, 6(k)=O otherwise, is
the Kroenecker delta function. In order to maintain proper scaling, the leading terms of the PEFs,
,(O,M), M=0,.,.. ,N-l, are set equal to -1 by definition.

Since negative indices for R(k-m) occur in the set of equations (1), it is necessary to note that
R(-n)=R*(n), where the asterisk (*) denotes complex conjugation. This last fact allows (1) to be re-
written in the alternative form:

M
- R(k'+m)x(*(m,M) = P(M)6(k') -M < k' < 0 (2)
:=O 0 < M < N-1

Equations (2) imply that the same result is obtained if the complex conjugate of a PEF is applied to the
time-reversed autocorrelation data. This "reverse-conjugate" symmetry is used in the derivation of the
Burg algorithm.

If the set of linear equations (1) for a particular value of M is written in matrix form, it can be
seen that the matrix of autocorrelation samples [R(k,m)], where R(k,m)=R(k-m), is an MxM Toeplitz matrix.
Therefore (1) can be solved by applying the algorithm developed by Levin.on, Robinson and Durbin. other-
wise known as the Levinson recursion. Following [11] the recursive solution to (1) can be written as:

P(O) = R(O) (3a)

M-l
1,(M,M) )- .' (m,M-l)R(M-m)/P(M-l) (3b)

X(m,M-1) - ,X(M,M) ,'.*(M-em,M-l) (3c)

P(M) (I - II(M,M) 12) P(M-'i) m = 1,2,... ,M-1 (3d)
M =. 1,2,...

Note that at each successive stage of the recursion, the introduction of one new autocorrelation sample,
R(M), generates but one independent value ,x(M,M) for the Mth-order PEF; all other coefficients of the
Mth-order PEF are determined from linear combinations of the coefficients of the (M-l)th-order PEF and
their -ompiex conjugates, using ,,M,M) as indicated by (3c).

The ((M,M)s are sometimes referred to as the reflection coefficients, because of the analogy of
their appearance in (3d) with a similar equation which occurs in the theory of a signal propagating
through a layered medium and being partially reflected at each layer interface.

In executing the recursion of equations (3a-d) it can occur (at least in theory) that, for some
particular value of M, say Mo, P(Mo)=O. This implies that Inx(Mo,Mo)l=l. This condition can arise only
in the case where the signal being analyzed can be modellpd as Mo complex sinusoids with no additive
noise (see Sections 3.1 and 3.2); in qeneral Mo is not finite.. In particular, Mo cannot be finite when
additive white noise is present [4].

For each order M of PEF, an estimate of the power spectrum based on (M+I) values of the autocor-
relation function is given by

XKA(.. ,M) =P(M) .. [ (4)
Ir!! ,•(m,M)exp(-jvJ",)

where , is the normalized angular frequency in radians with -".'", and the subscript KA refers to the
known-autocorrelation case. As discussed in Section 2.0 and as examination of (1) will indicate, the
PEFs are "spiking" or whitening filters, since all but one of their output values are zero. The power
spectrum of such an output signal is independent of frequency, or "white". lhe denominator in the
right-hand term of (4) is the power transfer function of the PEF, which if multiplied by XKA(',,M), the
estimated spectrum of the signal, yields the constant, white-noise spectrum P(M). Thus, since both P(M)
and the power spectrum of the PEF can be calculated, the signal power spectrum XKA(-.,M) can be estimated
from (4) for successively higher orders of PEF.
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2.2 The Burg Alqorithi,

The Burg algorithm is a procedure for estimating the reflection coefficients directly from a set of
time-series amplitude data. It avoids the biases introduced into the spectral estimate when the auto-
correlation is estimated from the data and the known-autocorrelation algorithm is then applied-, however,
as is shown in Sections 4.1 and 4.2, the Burg algorithm introduces biases of its own sort.

Let it be assumed that a set of N time-series amplitude data x(n), n=0,l,2,.. N-l have been given,
and that x(n) .0, where the brackets , ,denote expected value. The PEFs are derived sequentially. Each
successively higher order PEF is applied to the data in both directions simultaneously, and the average
of its forward and oackward output error powers is minimized by adjusting only its reflection coeffi-
cient. The remaining coefficients of each PEF depend on the sequence of reflection coefficients through
the functional relationship defined by (3c). The motivation for this procedure is its analogy with that
defined by (1), (2), and (3a-d).

Following e.g., [3,11-14] and taking proper note of the occurrences of complex conjugation in the
complex data case, the Burg algorithm can be written in a lattice-filter formulation:

fM(n) = fM-l(n) - -(M,M)bMI(n-1) (5a)

bM(n) = bM-l(n-l) - i*(M,M)fM.1(n) n M,M+I,...,N-I (5b)
M = 1,2,....N-1

and
f0(n) = x(n) = b0(n) n 0,l,2,...,N-I (5c)

(See Fig. 2, where z-1 denotes the unit time-delay operator.) The series fM(n) is the output frcm the
Mth-order PEF applied to the input signal x(n) in the forward direction, and is expressed in terms of
the output series from the (M-.l)th-stage of the lattice. The series bM(n) is the output from the Mth_
order PEF, conjugated and applied to the input data in the reverse or backward direction, and again is
expressed in terms of the output series from the (M-l)th-stage of the lattice. The B(M,M)s are the re-
flection coefficients.

Th(. sum of the Forward and backward output error energies at each stage of the lattice is given
by

N-1
E(M) . (If M (n)I + lbM(n)I') M = 0,1,2,... _N-l (6)

n--M

K The formula for computing i-.(M,M), the Burg estimate of the Mth-order reflection coefficient, is derived
by substituting eqns. (5a) and (5b) into (6), setting [LE(M)/•i•*(M,M)]=O and solving for i,(M,M).

N-1
2 b* (n-l)f (n)

nM M-1 ri-1n=-M (7)'
ý(MM) : N--T. . . .. .( ).

)' ([bM~l(n-1)[- t IfM~l(n)I?)
n=M

Notice the similarity of (7) to a single-lag unwindowed cross-correlation of the forward and backward
output series.

In order to obtain spectral estimates, it is usual to let the output error powers 'i be defined as
d,(0) E(O)I(2N) (8a)

and

(11) 0( - =-M,M)'),(M-l) M : 1,2-. N-1 (8b)

by analogy with (3a) and (3d) respectively. Then, letting the il(M,M)s be defined by

,k.(),M) = 1 0 -1) - I,(MM) I,*(M-nmM-1) in = 1,2,..., M-1 (9)

by analogy with (3c), and I:(0,M)--l uy definition, the Mth-order Burg power spectrum estimate XB(ui,M)
is given by

X (...,N) --M . . (10)

1iiw0 . (m,M)exp(-jim ,)

by anelogy with (4).
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2.3 The Zeroes of the Prediction-Error Filters (PEFs)

By employing standard z-transform techniques, the z-transforms of the PEFs for the KA case dnd the
Burg case can be written as polynomials in the complex variable z. For the KA case, this polynomial is
FKA(Z,M) where

M
F KA(Z,M) = 1 - m o(m,M)z~1  (ll)

Then (4) can be rewritten as

XKA(w,,,M) = P(M)/IFKA[exp(jw),M]I 2  (12)

where the denominator is the squared magnitude of FKA(Z,M) evaluated around the unit circle (IzI 1).

Similarly, for the Burg case, the polynomial is FB(z,M), where
M

FB(z,M) =1 - Z 3•(m,M)z-m (13) ,
In= 1

and (10) can be rewritten as
XB(w,M) = ,(M)/IFB[exp(jw), M]1 (14)

It is apparent from (12) and (14) that if any zeroes of FKA(Z,M) or FB(z,M) lie near or on the unit
circle, then the magnitude of the spectral estimators XKA(t,M) or XB(W,M) will be large at locations on
the unit circle in the vicinity of such zeroes. Conversely, zeroes lying close to the origin of the
complex z-plane will have little influence on the peaks of the spectrum, but will affect its magnitude
away from the peaks. Thus some insight into the character of an autoregressive spectral estimate can be
gained by studying the locations of the zeroes of its associated PEF.

3. The One-Pole Complex Sinusoid Case

The formula for a complex signal (xl(n)) consisting of a single complex sinusoid in the presence of
additive white noise is given by

xl(n) = A1 exp(jrb1 ) + E(n) (15)

where n is any positive or negative integer, or zero; A1 is the complex amplitude o' the complex sinu-
soid; "'1 is the angular frequency of the complex sinusoid, normalized so that -1,w<wl<.; and (n) is addi-
tive white noise having the property

<t.*(n)d n+k)-, = lj-l• (k.? (16)

where tVl"2 is used to denote the variance of c(n) and 6(k) is again the Kro'enecker delta function.

3.1 The KA Estimate of the PEF

The autocorrelation function Rl(k) of the signal defined by (15) is given by

R,(k) = JA I' exp(Jk?,I + jý 2•(k) (17)

where k is any positive or negative integer, or zero, and in general R(k) is defined by

R(k) = -x*(n)x(n+k) . (18)

Substitution of (17) into (3a) gives the result

P1 (O) = .l;'((1 + 1) (19)

where = A1 1
2/Vl2 is the signal-to-noise ratio (SNR). If there is no noise, i.e. I '1=o, then

PI(O)=IAl
The following general result can be derived from (3b), (3c) and (3d) when j-2 O and IAll"!O:

', (mM) [cI/(Mo 1+l )Jexp(jm, 1 ) (20a)

Sl/(M4,c1
2)Jexp(jmn. d (20b)Ii

and

P(M) M l(M2,[,1...1 (21)
in 1 ,2,3, . M. M

In the noise-free case (E -0 and . (20a) or (20b) imply that nl(l,l)=exp(jwl) so that
[.1(1,1)12=1. Then (3d) implies that P (])=O. Thus, for this special case, the sequences defined by A
(20) and (21) terminate 2at M=I. Otherwise for this signal model the sequences are infinite, with
PI(M)t1iCj"(l+M-l) as Moal.
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The z-transform of the KA PEF (cf. kll)) is
M

FM1(z'M) = 1 - [o'/(Mou+l)] ) z exp(jwIu) (22)m=l (1

where thq superscript 1 denotes a one-p )e complex sinusoidal signal. For M=l, FkA)(z,l) has a zero
at Zo[[ol/(o +I)]exp(jwl). For M=2, F A(z,2) has zeroes at

J -2o'

zoexp (jw 1 1 (23)

so that for high SNR (I- nj' • a), the zeroes occur at approximately 1.0 exp(jwl) and -0.5 exp(jql),
and for low SNR (o' <,' 1), the zeroes occur at approximately ±0o exp(jwl).

Some algebraic manipulation shows that, for the product Ma2 sufficiently greater than 1, an approx-
imate root zo of (22) is given by F- 2 - •

z L (M-l) Mo0j exp (jwI) (24)

This means that, as Mol -, the estimated location of the pole corresponding to the single complex sinu-
soid asymptotically approaches the correct location exp(jwl) on the complex z-plane along a radius or-
iented at an angle corresponding to the true frequency of the signal. This is true even when oU << 1.

Numerical solutions of (24) show that the other zeroes tend to distribute temselv ;s with approxi-
mately uniform angular separation and approximately constant radius inside the un,- -rcle so as to
account for the uniform spectrum of the additive white noise. The radius at which the zeroes occur
varies inversely with the SNR.

3.2 The Burq Estimate of the PEF

Let is be assumed that N samples of the signal defined by (15) have been given:

x1 (n) = A1 exp(jnw1 ) + c(n) n = 0,1,2,....N-1 (25)

Substituting (25) into (6) by using (5c) and then taking the expected value of EI(O) yields

(0)-. = 2Njrt 2 (o' + 1) (26)

it is not so easy to calculate <[;(II)>, since examination of (7) shows that it is recessary to
derive the expected value of a quotient of correlated random variables. In general, this requires that
the statistics of the random variables be specified and the problem be solved numerically. This will
not be done here.

However, for sufficiently high SNR (e.g., o'PlO0 or 20 dB) the approximation (l+x)l-l-x, where
x-i(n)/A1 , can be used to approximate the denominator of (7). Then the following approximate result,
which is independent of the statistical distribution of the white noise f(n), is obtained:

1.l/[l+Bl( ,N o12 exp(ju,) (27).

where
e I (1,N) = (N-2)/(N-l) 2  (28)

and 2'Bl(IN) 1 for 2,.N:-". Comparison of (27) with (20b) for M=l shows that for high SNR Bl(l,l) is a
biased estimate of ,1(1,1). However, FWl(l,l) correctly estimates the angular frequency (,, of the
sinqle complex sinusoid, and the biJs term B'(l,N) monotonically approaches unity as N becomes large,

From (26), (27) and (8a) and (8b) it can be shown that

.r ,i(0 ). = I -I? (o + 1) (29 ) ,

and, to the same degree of approximation as was used to obtain (27)

1(1) = 2BI(1,N)I1.1 (30)

Comparison of (30) with (21) shows that lil(l) is a biased estimator of PI(l), since for I1 large,
Pl (l) " 2 1,! .

The result (30) implies that the lattice-filter outputs fl(n) and b1 (n) as defined by (5a) and (5b)
have low SNR, since their expected power is at most only a factor of four greater than the additive
white noise power JJ". Therefore it would again be necessary to specify the detailed statistics of the
additive noise before the higher order reflection coefficients could be estimated. This will not be done
here.
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3.3 Discussion of the One-Pole Complex Sinusoid Case

The results of Sections 3.1 and 3.2 show that, for high SNR (o'>"00) the fir-t order (M=I) PEF gen-
erated by the Burg algorithm is biased as compared to the PEF generated by the KA technique. This bias,
however, monotonically decreases as the number of data N is increased, and both the KA and the Burg al-
gorithms correctly estimate the frequency of the complex sinusoid.

It is impossible to investigate the properties of the Burg PEFs for the low SNR case, or for orders
higher than M=I for the high SNR case, without specifying the stati'3tical distribution of the additive
white noise. This problem has not been considered here.

4. The Two-Pole Complex Sinusoid Case

The sampled signal x2(n) consisting of two complex sinusoids in the presence of additive white
noise is given by

x2 (n) = A1 exp(jndoI) + A2 exp(jnt, 2 ) + F(n) (31)

wtere Ak:IAk!exp(j.!k) is the complex amplitude of the kth sinusoid, Ik is its arbitrary initial phase at
n:O, and -k is its angular frequency, normalized so that -- ,ki", for k=l,2. c(n) is additive white
noise, as in (15). It is apparent that if A2:At and ,2=- _l then x 2 (n) is a sampled real sinusoid in
additive white (complex) noise. I

Equation (31) can be written in a form which will be subsequently more tractable:

x2(n) = A exp[j(nw0+Po)] <{ r exp[j(nAw,+Ap)]+ r-1 exp[-j(n&+Ap)]} + Ei(n) (32)

where Ao=IAA21 .is the geometric mean of the magnitudes of the two amplitudes; r=[IAll/lA2I]V is the
square root of the ratio of the magnitudes of the amplitudes; po=(q(l+l2)/2 is the mean
initial nhase; AP=(Fl-q¢,2)/2 is one-half the difference between the two phases; Uo=(.q+w 2 )/2 is the mean
anciuidr frequency, and A (,-2) is one-half the difference between the two frequencies.

4.1 The KA Estimate of the PEF

The autocorrelation function R2 (k) of the signal defined by (32) is given by

R2(k) = Ao(r"+r- 2 )exp(jk, )[coskA, + jo(r)sinkA.] + IrI'A(k) (33)
where

we,(r) = (r"-r' 2 )/(r'+r"2 ) 
(34)

and k is any positive or negative integer, or zero. Substitution of (33) into (3a) gives the result

P2 (0) + I 1(L: ± 1) (35)-rreo - 2 /• I r2 I 2 ste inlpwr

where ÷A'+r-2 )/. is the SNR. If there is no noise, then P2 (O) = Ao(r2+r 2 ) is the signal power.

From (33), (35), (3b) and (3d), the following general results for the reflection coefficient and
the output error power for M=1 can be derived when V-V • 0 and A(, / 0:

'2(1,1) exp(j,) [cos.,, + jr(r)sin,,..J/[,l 1 .i2]) (36)

and P2 (1) PA(r 2+r- 2 ) [l-, '(r)]sin;'A, + 1-2(2+t22)/{l+-2} (37)

For high SNR ("2 1), the first reflection coefficient is given approximately by

(2((1,1) = exp(jo)0  cos,ý, + j)(r)sin,,,] 1)
For ~l •(r)= an thezeroof (2)

For r=l, o(r)'= and the zero of FKA(z,l) (see Section 2.3) is located at zozcos.', exp(j.,.o), whi(0' ; ifS
on a radius oriented at the mean angular frequency o This zero moves towards the limitinn values ot
exp(jol) as r-, and ou(r).l, or exp(jf,2) as rO and 'r)=-l, and the sinqle complex sinusoid case i-,
approached in eacn case.

The output error power is, using (38), (35) and (Sb), 2]
P2 (1) = (2A0  sinA,..)'/(r"+r- ) (39)

which is essentially the signal power attenuated by the factor 2sintA,,/(r +r- 2 ). This factor is unity
when r=1 and A=,/2, and decreases as r or Aý, deviate from these values.

For low SNR (4...l), the reflection coefficient ar~d the output error power are given by
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(]1 exp(jw )o;ý Ecos4w + .JP(r)sin~A] (40)
and -22

P2() =I + A (r +r ) (41)
2 0

Thus the frequency estimated from the location of the zero of the M=1 order PEF lies in the range bounded
by -'o,~ and the output error power is essentially the unattenuated signal plus noise power.

For Mz2, (33), (36) and (3b) Lan 1,e col.ibined to yield

'L -e x p 0 3- -2 ' C(c n s 2 A + ,j p( r ) s i n 2 A wf 14 2

Il'()]ina,+ (32 [2+a 2
and (37), (42), and (3d) can he combined to yield

For high SNf (121)an

(42) reducnýs to (~ .>csM+~(+j!(3

L ) -exi( j2, 0) (45)

It can be shown from ~45), (36) and (3c) that

'X2 (1.2) exp (j 0i ) 2 cosAui (46)

so that, in the limit as the left-hand side of (44) approaches infinity, the zeroes of FK approach
zo::exp[&,O!A.,)], the true locations of the poles of the complex sinusoids. In this same limit,
1 (2 (22),=ISO tha t P2 (2) =0 and the recursi"on termi nates .

Foi the i ntermedi ate case, where ni'. , I but (44) i s not sa ti sfied., i .e.,

,12[l-r
2(r)]sin2Aw -IcosMA, + jfp(r)sin2Ail (47)

(42) can be reduced to

( 2,2) = exp(j2..n )cosAo[0.5 cosAui + jp(r)sinAwl (48)2 0

and it can he shown from (48), (38) and (3c) that

`2 (1 .2) =(0.5 exp(jw 0 )[cosA., + jio(r)sinAuj] (49)

so that the zeroes of 4A~~z,2) occur at [cosA.±ýji(r)sini.,,1Iexp(j.,Q) and -0.5[cosA,,a+jp(r)sinA~iaexp(jwo).
Comparison of these results with (23), whirh (lives the zero locations of the PEF for a one-pole signal
is very similar(ýy that, for the one-pole signal at hi 1h SNR. Coimparison with (38) shows that one of
the zeroes Of FKA'I(Z,2) remains the same as that of FkN)(z,l ) at high SNR; i.e., the two poles are
estiimated as one by the M=2 PI•F ii (44) is riot satisfied.

For the low SNR case ( ~ 1), (42) reduces to

2(2,2) =exp(j2w ) {,Ecos2tA(, + jr.(r)sin2A,,]} (50)

and P2(2) is the samie as P20l) as given by (41). Since for this case beth k2(2,2)l arid k~2(1,1)1 are
proportional to o', then froii (3c) it is clear that, to first order' in n2,

2 (L 1,2 ) 1,1l) 2 ,(5 1)

whr`2(0,1) is given by (401). The zeroes ofc~ z2 in this case occur at approximately
[=2 cos2Ni+j,( r) sin2. +.i[C %,,I+j.( ~i../ ep )o . For r=1 and thus p r)=0, the zeroes

occur at z=i)2('[cos2s]~j4 121cOs1t1I]/21exp(j,,,0), which lie close to the orinin of the coniplex z-plane,
on a diameter of the unit circle passing through the point z=exp(jii ). For r-el(i(r0) o r->6)r
--I) the zeroes tend to the locations z=-'2[1 l±' 212)pjP l or Al2 ( ) o 'lir

xpjo r =' l+1/0xpj;2 respectively.
Thus it is apparent that for low SNR, the spectral estiiiate corresponding to M=2 is incapable of re-
solving the spectral peaks corresponding to the poles of the two coimplex sinusoidal sionals.

There appeirs to be no straightforward recursion formula for the KA PEF coefficients, as -in the
case of the single sinusoid examiple of Section 3.1. Therefore, following this approach, it is not
easy to determine the behavior of the KA PEts in the case of largeM and, in particular, whether re-
solution of the two sinusnids is to be expected for the product Mný sufficiently large, independent of I
the value of ~.This problem, however, has been solved using powerful matrix tech.iiques, by Marple (6]1.
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4.2 The Burq Estimate of the PEF

Let it again be assumed (cf. Section 3.2) that N samples of the signal defined by (32) have been
given:

x2 (n) = A0 exp [j(n,, + 4,o )]r exp[j(nA,+Afl) + r-I exp[-j(nA,,,+AJ)] + (n) (52)
0 0~n :O,l ,2,....,N-I

Substituting (52) into (6) and (7), using (5c), and then applying (8a) and taking expected values with
respect to the additive white noise only yields

"[112(0):. = A (r'+r-2)[I + 2 cos( mi d G(N,AW)/(r2+r- 2 )] + VK (53)

for the expected siqnal-plus-noise power. Here

G(N,Aw) N sinA(54)

is the common grating-function frequency response of a normalized, uniformly weighted discrete Fourier
transform of N data, and

A(mnid = (N-I)Ac + 2A& (55)

is the phase difference between the two complex sinusoidal components, reckoned at the middle of the
data set. Note that there may or may not be a datum at the middle of the data set, according to
whether N is an odd or even integer, respectively. Also note that Ap has not been averaged, but
rather is assumed to be a fixed parameter of the particular set of data being analyzed. This assump-
tion corresponds to the usual practical case, where only one set of data is available.

Again, it is not easy to calculate the expected values of the reflection coefficients unless the
assumption of high SNR is made. In that case the same approximations can be made as in the derivation
of (26) to get

I cosA,, + jm,(r)sinAu, + 2 cosAýmid G(N-I,Aw)/(r:+r " 2(5
' 2( I) - exp(jl.) 0 II i (56)

I1 + 2 cosA i cosAu, G(N-IAt,,)/(r'+r" 2 ) + 2 [+B(I,N)]
kmid 2 2

where the bias term B2 (l,N) is of order (N-i)-l and is given by eqn. (Al) of Appendix A.

Comparison of (56) and (36) shows that for high SNR 1,2(IJ) is a biased estimate of '(2(lI) unless
N-,= For infinite SNR and finite N, however, ;,2(0,l) becomes an unbiased estimate of,2(1 ,l) if

C cos,\,m id 0 (57)

G(N-I 1 0 (58)

Similarly, comparison of (53) and (35) shows that !2(0) is a biased estimate of P2 (0) unless either (57)
is satisfied or

G(N,A,,) = 0 (59)

It is impossible to satisfy (58) and (59) simultaneously for N finite, but when (5/) is satisfied the
Burg spectral estimate (14) is unbiased for M=I and infinite SNR.

Progressing now to the second stage (M=2) of the Burg algorithm, it is found that the alqebra be-
comes all but intractable unless the condition of infinite SNR is assumed. For this special case, (56),
(52), (5a-c) and (7) can be used to derive the following expression for f.2(2,2):

v2 (2,2) -exp(j2,,) (Il - 2 cos.:mmmid G(N-2,,',u)/(r+r -2)}

-2 cosAqmi d G(n-l ,A,,) fcosAt mi dG(N -2,A,) [cosAw+j ý%(r) si nA•,]

- 2L - ~2 COSA,,/(r;'+r 2)

+ cos"Aq idG (N - ,,.) 1 r[cos2A,,,+j,(r)sin2AM]J

- 2 cos ,midG(N-2,A!,,)/(r?+r_2 )

{I - 2cos .iidg(N-2,A,,,)/(r'4r-
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-2 cOSA4 mid cosAwG(N-l,.&) {coSAýmidG(N-2,A&)- 2/(r2+r2)}

+ cos;'N M .d G(N-l 1~, { 2cosAý mid cos2A~oG(N-2,Aw)/(r2+r 2)} (60)

Examination of (60) shows that, even for infinite SNR, the "correct" value of -exp(j2wo) for the
reflection coefficient -,2(2,2)> is not realized for N finite unless either (57) or (58) is satisfied.
Realization of either ofthese conditions for infinite SNR will, as examination of (60) show, cause
the magnitude of the reflection coefficient to be unity. Thus it can be inferred that, for sufficiently
high SNR, the two crucial factors affecting the reflection coefficient computed using the Burg algorithm
are the phase difference between the two complex sinusoids at the middle of the data record, At piiid, and
the number of cycles of difference frequency contained in the finite-length data record.

4.3 Discussion of the Two-Pole Complex Sinusoid Case

The results of Section 4.1 and 4.2 show that even for infinite StIR, the first (M=l) and second
(M=2) order PEFs generated by the Burg algorithm are biased as compare! to the PEFs generated by the KA
technique. It is clear from the appearance of the grating function (54) in the equations (56) and (60)
for the first- and second-order reflection coefficients that the magnitude of such biases will have in-
verse dependence on N, the length of the data record.

The effect of this bias is to reduce the magnitude of the reflection coefficient and thus to allow
significant levels of uncancelled signal energy to propagate beyond the stage M=2 in the Burg algorithm.
Then PEFs of successively higher order can be based on this coherent "leakage" signal. However, when-
ever one of the criteria described by (57) or (58) is satisfied, no significant coherent leakage signal
is propagated oeyond the stage M=2. It is conjectured that it is the presence or absence of this co-
herent leakage signal beyond the stage M=2 that determine whether or not line splitting will occur for
PEFs of some higher order. Results both of previously published [7,83 and new simulation studies
support this conjecture, as indicated in Section 5 below.

5. Results of Some Simulation Studies

In this section are presented the results of some studies of the performance of the complex Burg
algorithm for the analysis of signals known to be comprised of two complex sinusoids in the presence of
very weak additive complex white noise (o+=77 dB). These studies parallel and extend a set of studies
performed by Fougere et al [8] using the real-arithmetic Burg algorithm to estimate spectra of a single
real sine-wave signal in the presence of very weak additive real white noise.

It will be necessary to make comparisons between complex data of the form (52) and real data

xs(n) = sin(r,s + + , (n) n = 0,1,...,N-1 (61) 4

which is comprised of N samples of a real sine wave with initial phase i1s plus additive uncorrelated
noise samples ,(n) . The angular frequency 's is given by

W = itfAt (62)

where At is the sampling interval (sec) and f is the signal frequency (Hz). Equation (61) can easily
be rewritten in the form of (52) by letting Ao=0.5, r=l, q'o=0=, A+=%s-ii/2, ,,4 and Aw,, Then the
phase difference between the two complex components of the sine wiave reckoned at the middle of the data
record is, according to (55), given by I

Npmid (N-1),., + 2(1,si1 (63)
The results of Fougere et al have been extended by allowing the value of r, the ratio of the posi-

tive frequency to negative frequency signal amplitude, to range from I to .- in a series of six steps.
These steps are denoted by the letters A-F, and the relevant signal parameters are summarized in Table
1. For all steps the total signal power A6(rl+r- 2 ) was maintained constant and equal to 0,5, the power
of a real unit-amplitude sine wave Also, the values of qo=0 and ,;,o=O were maintained for all the
trials. These restrictions do not limit the generality of the rceults obtained. It is clear that anl
arbitrary phase rotation of the entire data-set will have no effect on its power spectrum. It is also

clear that since terms of the form exp(jk,,o) can be factored out of the ,(m,M)s and ci(m,M)s, the effect

of non-zero 10o is simply to shift the estimated spectrum alonq the trequency axis (in a circular or end-
around fashion) by the amount 'o- Finally, it should be noted that for each set of cases examined, the
same set of noise-data samples was used with all sets of signal data.

5.1 Case I

The signal data for Case 1 consisted of 21 samples of two complex sinusoids with angular frequen-
cies -1 ,2='2n/20, so that A,,=,l. A,;,mid was stepped from -i' to +1i in increments of 2 o/9 radians, so .

that in all instances cosAt, 1 id#O. All spectra were estimated using (14) and a length 20 (M1=9) Burg
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jp(r) + 0.4 cosatd /(r+r-2 )(

and (60) reduces to

6 (2.2) +-(1 - 0.04 cos',id)/(1 ÷ 0.04 cos'5md (65)

Consideration of (64) and (65) shows that here the Burg PEF should have greatest bias for ral, when
(r +r-2) has its miniffum value of 2, and that the bias should vanish for re-, when P(r)-l and 2Bz(0.1)>I

1-4xlO- 8 . For the case r=-, (60) and hence (65) are not valid.

Examination of Figs. 9-14 supports all these conjectures. These figures show orthographic projec-
tions of the 91 spectra, with w ranging from -r to +w across the page. and amtd increasing "into" the
paqe. The labelled vertical bar to the left of the spectra indicates a variation of 20 dB in power
spectral density. It is clear that there is rno line-splitting for Omid--Sw/1 , -3w/2 and -w/2, and that
the splitting shows a quasi-cosinusoldal dependence on Atid as suggested by the form of (64). The
splitting became less sev sjr2s-r , again as might be inferred from (64), until for Case 2E the weaker
signal pole was correctly est'mated as a single pole. Examination of the zeroes of the PEFs and the
residue powers showed measurable splitting of the stronger signal poles even for this case. *Case 2F of
course showed no line splitting, since there was then only one signal pole.

The "banding" effect visible most clearly in Fig. 9 (Case 2A) and to a decreasing extent in sub-
seouent figures can be explained on the basis that when cosAtd-O, 1 .2(2,2)1l so that the output error
power was greatly reduced in those cases. This caused a shift in the level of the spectrum, as can be
seen from the dependence through (8b) of the numerator of (14) on this quantity. This also explains the
obvious drop in spectral level in Fig. 14, where 182(l,l)II for all values of Aqvmid.

Examination of the residue powers showed that, when line-splitting occurred, a significant portion
of the signal power was accounted for by each pole of a split pair; in fact for Case 2A and IcosA midl
ý1, 70 of the signal powers appeared at the more severely deviated poles, and only 30% at less sev-
erely deviated poles. That the greater portion of the signal power was associated with the more de-
viated pole appeared for these data to be true in general. The present theory makes no prediction as to
why this should be the case, although in principle the theory for the infinite SNR model could be ex-
tended to do so.

5.3 Case 3

The signal data for Case 3 consisted of 25 sets of 101 samples of two complex sinusoids with etid
"-2r in all cases. Again wo-0 was chosen, and Aw was stepped from 2nxO.0125 to 2Wx0.4925 inclusive in
increments of 27x0.02. Thus Case 3A parallels Case 4 of [8], where 101 samples were taken at intervals
At0.0ls of real unit-amplitude sine waves with *s-r/4 and fs stepped from 1.25 Hz to 49.25 Hz inclusive
in steps of 2 Hz. In all cases the spectra were estimated using (14) and a length 25 (M-24) Burg PEF.

Figures 15-20 (Cases 3A-F) show the spectral estimates obtained from the data. These figures are
again orthographic projections with ,Ms increasing "into" the page. Any comments on the detailed struc-
ture of the line-splitting shown would necessarily be speculative, but some general observations can be
made.

The first remark is that line-splitting appears to become less severe as r was increased in value,
as examinations of (56) and (60) might infer, and in fact line-splitting vanished for r- as discussed
in Sectitn 5.2. /

The second remark concerns the possible dependence of the spectral level on the values of G(N-I,&1 )
and G(N-2,~j). These values are given for the plotted spectra in Table 2. It is interesting to note
that the minimum spectral level occurred at the minimum values for IG(N-l,Aw)I, IG(N-2, aw)I and Iros&ad,
and the higher spectral levels were observed when G(N-2,Aw)<O, or tA>2wxO.25. Examination of (60) shows
that as ,, exceeds the value r/2 certait terms change sion in such a manner as to decrease the magnitude
of 0•2(2,2) and thus perhaps to increase the magnitude of the numerator of (14) through the relation (8b).

Finally, for Case 3F it is again observed that the spectral level drops as r and the bias term in
(56) vanishes, similar to Case 2F. For Case 3F only,.the estimated poles accurately reflected the true
signal pole locations, were unsplit and had correet residue powers. For all other cases, examination
of the locations of the poles of the Burg spectral estimate showed the existence of multiple poles with
significant residue power in the vicinity of the true locations of the two signal poles.
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TABLE 2
Values of (,*/2-) x 100. G(NX-l,..) and G(N-2,t,.) for data from Case 3

U%42-) x 100 G(N-IA0) G(rI-2.,A•) cos'w

1.25 C.1275 0.1823 0.9969
3.25 0.0493 0.0488 0.9792
5.25 0.0309 0.0295 0.9461
7.25 0.0227 0.0206 0.8980
9.25 0.0182 0.0125 0.8358

11.25 0.0154 0.0118 0.7604
13.25 0.0135 0.0092 0.6730
15.25 0.0122 0.0071 0.5750
17.25 0.0113 0.0058 0.4679
19.25 0.0107 0.0033 0.3535
21.25 0.0103 0.0024 0.2334
23.25 0.0101 0.0011 0.1097
25.25 0.0100 -0.0002 -0.0157
27.25 0.0101 -0.0014 -0.1409
29.25 0.0104 -0.0028 -0.2639
31.25 0.0108 -0.0042 -0.3827
33.25 0.0115 -0.0058 -0.4955
35.25 0.0125 -0.0076 -0.6004
37.25 0.0135 -0.0098 -0.6959
39.25 0.0160 -0.0126 -0.7804
41.25 0.0191 -0.0165 -0.8526
43.25 0.0243 -0.0224 -0.9114
45.25 0.0340. 40.0328 -0.9558
47.25 0.0582 -0.0579 -0.9551
49.25 0'.2123 -0.2142 -0.9889

6. Summary and Conclusions
The theoretical properties of autoregressive spectral analysis schemes have been analyzed when the

siqnal under investiqation is known to be comprised of one or two complex sinusoids in additive white
noise. This latter case-incl-Odes as a special case data comprising a single real sine wave in additive
white noise. It has been shown that when the autocorrelatlon of the signal is known, the frequency of a
single complex sinusoid can always be extracted, independent of the signal-to-noise ratio (SNR), pro-
vided enough samples of the autocorrelation are available. It was also shown that the Burg algorithm
correctly extracts the frequency of a single sinusoid in additive white noit from the complex ampli-
tude time-series data, provided the SNR is sufficiently high.

The situation when two complex sinusoids are present is much more complicated. It was found to be
fairly difficult to derive general equations describing tne spectrum for the known autocorrelation (KA)
case, even for a two-pole autoregressive model. Neverthuless these equations served as a useful touch-
stone for the extremely complicated Burg equations for tOe analysis of time-series amplitude data. De-
tailed theoretical analysis showed that, unlike the KA case, the Burg spectral estimate is expected to
be sensitive both to the number of cycles of the difference frequency between the two components con-
tained in the finite-length data record, and in particular to the relative phase difference between the
two complex sinusoidal components at the middle of the data record. Finally, simulation results were
shown to be fully compatible with the conjectured basis of line-splitting. presented here.
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The bias term 82(0,N) found in the expression for <0 2(0,1)> is:

B2((1,N) - (N-l)" 1 1l + [(N-2)/(N-1)]

[cost,. + j, (r)sin.N, + cosv,1midCOSt4G(•l- 2 ,A,,)/(r+r})

[cosh. + J, (r)inA.., + 2cosAmtidcsA.,t(N.1,A,,)/(r:+.r2)J (Al)
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Fig. 3 Case IA. r 1 Fig. 6 Case 10. r • VA-

Fig. 4 Case 1. r Fig. 7 Case 1E. r4

Fig. S Case 1C. r A b Fin. 7 Case IF. r * .

Fiqs.-3-8. Cases 1A-F. Estimated specJral power vs. anqular frequency and 4mid. ,-).l2-2"120.
N.21. M-19. ASmid steppefrom -,to i in increments of 2r/9 radians. (Persnpec&ive
projections.)
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Fig 9Cae 2. ýý IFig. 12 Case 20. r /0

Fig. 10CV 6 1 i.1 Case 20. r AOO

Fici. 10 Cdase 2(. r ,2 -Fig. 13 Case 2F. rvld

Fias. 9-14. Cases 2A-F. Estimatod spectral power vs. angular frequency and M4mid. uwl&-Ij2*/?.
Nr6. M,5. ,%Imid stepped from -5v/2 to -1/2 in increments of 2V/90 radians.
(Orthorlraphic projections,.)
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Fig. 15 Case 3A. r = 1 Fiq. 18 Case 3D. r

• !0 p

Fiq. 16 Case 38. r v? Fiq. 19 Case 3E. r V MO

P, 11. p

Fig. 17 Case 3C. r ,In * Ftq. 20 Case 3F. r .

Fiqs. 15-20. Cases 3A-F. Estimated spectral power vs. anqular frequency. A•mid a 2r. tl-101.M r 24. , 1=,-,,,2 stepped from 2r x 0.0125 to 2r x 0.4925 in Increments of 2r x 0.02.
(Orthoqraphl.c projections.)
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ABS'RACT

Using the ideas froAj one-dimensional (1-D) maximum entropy spectral esti-
mation, we derive a 2-D spectraJ estimator by extrapolating the 2-D sampled
autocorrelation (covariance) function. The maximum entropy method used here
maximizes the entropy of a set of random variables. The extrapolation (predic-
tion) process under this maximum entropy condition is shown to correspond to
the most random extension or equivalently to the maximization of the mean
square prediction error when the optimum predictor is used. The 2-D extrapola-
tion must be terminated by the investigator. The Fourier transform of the
extrapolated autocorrelation function is our 2-D spectral estimator. Using
this method, one can apply windowing prior to calculating the spectral
estimate.

A specific algorithm for estimating the 2-D spectrum is presented and its
computational complexity is estimated. The algorithm has been programmed and
computer examples Ae-presented.

I. INTRODUCTION

For time series or one-dimensional (I-D) data, one may consider the maxi-
mum entropy (ME) formulation [1) as a procedure for deriving a spectral esti-
mator such that the entropy of the signal is maximized subject to the con-
straint that the spectral estimate is consistent with Lhe known autocorrela-
tion values. This spectral estimator is the same as that derived by autore-
gressive or linear predictive methods [2). Some authors have considered this
criterion as a smoothing or a whitening process [3-81, an interpretation which
has been advanced for both the HE and linear predictive (LP) methods.

For 1-D data the solution to the ME spectral estimation problem is
achieved via a polynomial spectral factorization. However, for the 2-D case
such an approach is not fruitful since 2-D polynomials cannot in general be
factored, i.e., the Fundamental Theorem of Algebra does not hold. For this
reason there has been some concern in the literature about the existence of a
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2-D ME spectral estimator. This is to say, while it seemed quite natural to
extend Shannon's I-D entropy ideas to 2-D, there was no assurance that a 2-D
HE spectral estimator existed and if it did, was it unique?

Barnard and Burg [101 originally hypothesized such a 2-D HE spectral esti-
mator, giving the expression for the estimator and suggesting that it could be
derived via a Lagrangian multiplier approach. Ables [31 agreed with this ap-
proach and suggested a modified constraint on the 2-D ME function which would
account for noisy...d&.a, Ponsonby [111] attempted to derive the 2-D ME spectral
estimator following the suggestions in [3,101 but was unable to determine a
closed form analytical solution due to the nonlinear integral equations. An
iterative numerical solution was developed by Wernecke and D'Addario [51 for
application to radio astronomic data. Wernecke [41 justifies tite ME entropy
reconstruction model in terms of its smoothing properties. From the viewpoint
of image processing an alternate model has been used [12-15].

The 2-D ME spectral estimator is not the result of a simple extension of
the I-D solution. In fact, Woods [161 has provided a constructive proof of
the existence and uniqueness of a 2-D discrete Markov random field which
agrees with known correlation values in a nearest neighbor array, thus placing
the 2-D spectral estimator on a firm theoretical footing. As might be antici-
pated the derivation and the algorithm are considerably more complicated than
that for the I-D case. The corresponding spectrum is the 2-D ME spectrum
[10). Wood's algorithm is in some ways an improvement on Ong's [17] ME algor-
ithm. However, the computational load is still quite extensive for even small
(3 X 3) data arrays (a 5 X 5 correlation array). The computation time is de-
pendent upon the degree of approximation used in calculating the spectrum;
typical values for Wood's algorithm are 5 minutes and 20 minutes for an' IBM
360/44 for two different approximations to the maximum entropy spectrum for a
5 X 5 correlation array.

In our search to find a more efficient 2-D spectral estimator we decided
to extrapolate the sampled autocorrelation function, considered as that of a
set of random variables, under the maximum entropy condition and then Fourier,
transform the extrapolated autocorrelation function\ to obtain the estimate of
the spectral density of the random field.

Some of the properties of our estimator are not investigated but its exis-
tence and uniqueness under certain conditions are proven. The argument that
this estimator will yield a high resolution spectral estimator is based on the
analogy with the one-dimensional case, where a maximum entropy extension of
the autocorrelation function resulted In a better spectral es imation than an
extension of the autocorrelation function such as that obtained by appending
zeros to artificially extend the duration of the autocorrelation function.

We illustrate our results with computed examples and show that our algor-
ithm appears to be more efficient, computationally, than that of Woods [16).

18
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II. OVERVIEW OF OUR APPROACH

The I-D algorithm does not require that the actual extrapolation be per-
formed, rather the spectral estimate is obtained directly from a system of
linear equations in the known correlation values (Yule-Walker equations).

Our approach for the 2-D case is to formulate the problem such that we
actually perform an extrapolation of the known 2-D autocorrelation values. At
each step of the extrapolation, we hypothesize that an additional sample of
the random data field is available. However, its probability structure as a
random variable with respect to the previous set of samples is not completely
known. The 2-D ME extension used in the paper is that the entropy of the new
set of random variables is maximized subject to the constraint that these ran-
dom variables are samples from a stationary random field. By successively
choosing the location of the hypothetical samples, we are defining a one to
one map between the set of points in the (x,t) plane to the set of integers.
This defines an order for the random variables. (In particular this order is
implicit in the autocorrelation matrix of the random variables.) This map
will be called the spatio-temporal."l-D" extension path. The uniqueness of
the spectral estimation with respect to the choice of this path i ,unsolved.

The autocorrelation extension process is reduced to a linear prediction
model, in its general sense, where the new random variable in the "I-D" exten-
sion path is predicted from the existing (known) random variables. The corres-
ponding prediction-error of the model is'maximized so as to producethe most
random extension of the autocorrelation matrix.

In the 1-D case, once the order of the LP or AR model is selected, the
solution to the linear difference equations is determined by the initial condi-
tions. If one attempts to derive a higher order model from the extended auto-
correlation matrix, the coefficients of the new model reduce identically to
the coefficients of the original lower order model.

For the 2-D case the order of the model is dictated by the number of
available samples of the random data field, Therefore, the model order-in-
creases with each extension step, yielding new prediction filter coefficients
at each iteration. In contrast with the I-D maximum entropy extension method,
the extension for the 2-D case must be terminated by the investigator.

Note -specifically that the extension process described here deals with
the autocorrelation values where as the 1-1) Burg technique [10] is applied to
the actual data.

A. Formulation of the Extension

Let the real random data field be denoted as f(x,t) such that the process
is Gaussian with zero mean and stationary in time and space. The autocorrela-
tion function is given by

R(p,T) E [f(x,t) f(x+p, t+t)J (1)
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where E denotes the ensemble average. This function is also the autocovari-
ance since we have assumed a zero mean process. This function is symmetric
and, positive semidefinite. We may, or course, gen4ralize to complex random
data fields.

We denote our matrices as

f(xI, ti)

f(x 2 , t 2 )

AN = E . [f(x 1 ,t 1 ) f(x2,t 2 )...f(xN,tN)I (2)

f(xN tN)

where the ordering of A is arbitrary in contrast with the uniform sampling
I-D case. Because of &is the matrices are not necessarily Toeplitz even
though the process is stationary. However, Rij=Rii, thus, AN is symmetric and
positive semidefinite.

The power spectrum is defined as [18,19]

P(f,k) = ffR(pc)e -2ni(ft-kx) dt dx (3)

We assume the 2-D (N X N) covariance (autocorrelation) matrix Ny, is
known and obtained by sampling the spatio-temporal field at [(( ,ti)
(x 2 ;t2).- (x ,t )] We ask, what should the extended covariance matrix .e
if n addition ample of the random field at location (x , t •+) is avail-
able? The stationarity of the random field is maintained"and th entropy of
the new set of fYV1Yji-ndom variables is maximized with respect to the unknown
autocovariance values.

We illustrate the extrapolation by an example.

Example

Imagine the random field is sampled at four locations [(0,0), (0,1),
(1,1), (1,0)1 as shown in Figure 1, then

R R1 RRI R R(0,0) R(0,1) R(1,1) R(1,0)

SR21 R22 R23 R24 R(0,1) R(OO) R(1,0) R(1,-1)
A4=

R3 1 R3 2 R3 3 R3 4  R(1,1) R(1,0) R(O,0) R(O,1)

R4 1 R4 2 R4 3 R R(1,0) R(1,-1) R(O,1) R(0,0)

We assume that A4 is known.

Note that an element R of the above matrix correponds to sampling the
autocorrelation function R(Mn) at a point dictated by the ordering of the
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random variable via the "I-D" extension path. These samples are shown in
Figure 2.

Now suppose an additional hypothetical sample at (0,2) in the (x,t) plane
is available (as shown by the open circle in Figure 1), then

1 " R(0,2)
SR15

I 25 R(0,1)A 5 A A4 A 42 =1 (5)

IR
35 R(-1 ,)

1 R4 5  R(-1,2)

P R R R 1 R x xx xi R(OM0
R51 52 53 54 1 55

The elements in the last row are determined by symmetry. Only R(0,2) and
R(-1,2) are undetermined.

The entropy of this tet of random variables is log IAsI, hence we want to
maximize JA5 . Letting Re = (R5 1 , R5 2 , 53, R5 4 ), we have

T -4 R-1

SceA is fied we nee to maximizee R(0,0O) (6) Rwt esett--e
T -1

Since A4 is fixed, we need to maximize R(0,0) - R A"1 Re with respect to

R(0,2) and R(-1,2). This will be shown to correspond to maximizing the predic-
tion error of an optimum linear predictor in the next section.

III. TIlE "MOST RANDOM" EXTENSION

We may illustrate our idea by reconsidering the previous example, but we
number the random variables in the (x,t) plane as [v 1, i = 1,2,3,4 where the
correspondence between v. and its location on the (xt) plane is arbitrary.
We let v 5 denote the open circle random variable at (0,2). The linear predic-
tion estimate of vs in terms of the other Variables is

4'
v= 5 avi (7)

i=1

The prediction error is

5
e5  v5 - = I a v where a - -1 (8)

i= 1

2 2
We determine the coefficients, ai, such that E e.] = e5 is minimized.
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By orthogonality

e 5v = 0

5 5
-7a. v.v. = - aR.. , i = 1,2,3,4 (9)
j=1J J 1 j= I P

In matrix notation the solution becomes

A = -IR (10)

where A is the column vector (a, , a 2 , a3 , a4 ), A4 is assumed nonsingular
and R is the column vector (RIs , R2, R3 5 , R45 ).

-e

Tfe mean square prediction err.o'r when using the optimum pr~edictor
A A 4 R is given by

e2 = R5 5 - RT A = R(O,0) - RT A' (11)
0 55 -e -- e 14 -e

which gives the-varlfice of the error as a function of the autocorrelation
function when an optimum predictor is used. Note that R is not completely
known and the optimum predictor depends upon R . Hence it we choose Re such
that the corresponding optimum predictor has t-e largest prediction error of
all other choices of R consistent with the stationarity constraint, then this
extension is exactly the maximum entropy extension as described in the pre-
vious section.

IV. EXISTENCE AND UNIQUENESS OF THE SOLUTION

Our method is basically one of extrapolation whicn we have shown reduces
to the maximization of the determinant,

AN R

A i T (12)

R e R(O,0)-e

subject to the constraints that some components of R are known, say m of
them. Rearrange R such that the unknown components1ccur at the top of R
(R is a column vector) to obtain,

Ru
-e (13)
Rk
-e

T T

Ru Rk R(0,O)-e -e
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where the superscripts r,u,k stand for rearranged, unknown, and known, respec-
tively. This determinant is e. -al to,

AN -T e -

ri. UA R(O,O) R IAý iRul(4
INJ e- -e

which we wish to maximize with respect to the components of RU; since
e2 = R(OO) - RT A-1  R > 0 is required for an autocorrelation matrix
extension, and RIOOý is-ixed, we have to minimize

kT] (15)
T ]- e -ei

where we properl,, partitioned A rN ; expanding, we minimize

T T k k RT k T k
[Ru AR" + Ru BR + R CR + R D R (16)
-e -e -e -e -e -e -e -e

with respect to the elements of Ru. This gives--e

Ru -A- B Rk (17)

Hence Ru1 exists and is unique as long as we can assume that AN is positive
definite. But at any step of the extrapolation we have,

JANI ANIC' - T e 'Rej (18)

Thus AN+ will be positive definite if the prediction error variance

R(0,O) -R A R is positive. Therefore if the covariance matrix at step N

is positive definite the extrapolation will yield a positive definite exten-
sion, provided the error variance is not i~uul.

V. THE MAXIMUM ENTROPY TWO-DIKENSIONAL SPECTRAL ESTIMATOR

An efficient computat onal algorithm follows noting that A,+, can be ro-
: ~ ~cursively computed from A M'

We assume A N to be known and positive definite.
-N

1. Compute A let M N.

2. Generate the position of a hypothetical new sample (assuming an extrapola-
•r• tion path).
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3. Find which components of R are known by stationarity.
-e

4. Rearrange A1 to obtain (AM)- 1

5. Compute R-u A- 1 [BR k] where A and B are submatrices of (Ar)-1
-e -- e T -1

6. Computie Al-R and the piediction error R(0,0) - RTe A 1 R . If the pre-
diction error is zero, stop.

7. CopueAreaios
Cmue according to the recursion relations*.

8. Let M = M+1.

9. Is this extension adequate (i.e., is M large enough)?
If not, go to step 2.

10. Construct from the MXM autocorrelation matrix found in step 5 an LXL
autocorrelation array. Thi•. -XL array is the extended autocorrelation
function with maximum lag of -y-- in each dimension.

t1I. Take a two-dimensional FFT of the LXL array constructed in step 10.

Steps 9, 10, and 11 above need some further explanation. Suppose one de-
cides that the final extended autocorrelation (covariance) array is to be of
order LXL; this is the LXL array that is transformed in step I1. However, M
in step 9 must be much larger than L. The reason for this is that we must
select the autocorrelation values with the appropriate lags from the MXM
matrix to construct the LXL array. This is best illustrated by examining
Equation (4) again. Here A4 is a 4X4 matrix with the various R. . entries.
However, note that the maxim•um autocorrelation lag for this matrlx is only
unity in any one direction. If a matrix with autocorrelation values for
larger lags is desired then the extension LpInocess must be continued. In
general one can convince oneself that M = (--Z- + 1)2 and that L is odd be-
cause of the symmetry of the autocorrelation function.

The computational complexity of this algroithm may be estimated as fol-
lows :

l :i) less than 3M2 operations are required at step 5
ii) less than 2M2 operations are required at step 6

iii) less than 6M2 operations are required at step 7

ii
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This gives less than I11 2 operations per iteration. In the case where we
start wiLh N=5 and extend A to a 121X121 matrix, then less than 19X10 6 opera-
tions are needed not including the FFT nor the necessary row and column inter-
change operations. This corresponds to an LXL array of 21X21. For the case a
of a 3X3 data (auto correlation) array (a 5X5 covariance matrix) the computa-
tion tiwe on ar Amdhal 470 was 10 sec for extrapolation to a 21X21 (LXL) co-
variance array and 54 sec for extrapolation to a 29X29 (LXL) covariance array
including the appropriate FFT calculations. The storage required is 150 Kbytes
(single precision) which exceeds Wood's 56 Kbytes but our program appears to
execute faster and does require additional storage for the FFT.

We illustrate this algorithm in Figures 3, 4, and 5 where the spectra of
the actual 29X29 (LXI,) covariance data, the 5X5 covarialce data (extended with
zeros only), and the algorithmically extended data are shown. Only one quad-
rant of the spectrum is plotted for convenience. The original data field are
samples from two sinewaves of frequencies

-1f = 0.207 Hz, fx = 0.318 (cm) andft

f = 0.11 liz, f = 0.11 (cm)"I respectively
t x

The noise level is n2 = 0.8 znd the signal power is 1 for each sinewave.

These figures show three contour levels at 97%, 50%, and 10% of the nor-
malized peak value in each power spectrum. Note that the maximum enLropy ex-
teaded spectrum has well defined peaks at the 50% level, i.e., the peaks are
easily resolved. However, the peaks in the 5X5 covariance array (extended
with zeros to 29X29) are not resolved at the 50% (1/2 power) level.

VI. CONCLUSION

The proposed extension of the autocorrelation •ovarl.ance) function under
the maximum entropy condition is such that at the M step I-+M samples (at the
locations specified by the initial available aut3correlation values and the
particular choice of the extrapolation path) of the rcandom field satisfy a sys-,
tem of partial difference equations, i.e., linear prediction equations. I
However, the prediction error is only orthogonal to tho samples involved in
the prediction and is not necessarily whiite. Whereas in the o.e-dimensional
case the maximum entropy extension of the autocorrelation function results in
a predictor whose prediction error is orthogonal to all past samples of the
random process, i.e., the error is white.

One interesting uniqueness problem remains uisolved, namely, the depen-
dence of the extended autocorrelation function on the -xtrapolation path. If
the arbitrary choice of an extrapolation path does not yield a unique maximum
entropy spectrum, then it is possible to determine constraints on the selec-
tion of an extrapolation path which may yield a unique spectrum.
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TWO DIMENSIONAL SPECTRUM
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O. 0 O0O0. 3 9LOX 10 HI~ IN(

Figure 3. Spectrum of two sinusoids calculated by transforming
the truncated (29X29) known spatio-temporal autocor-
relation matrix. Contours are at 97%, 50%, and 10%
of the maximum peak spectral value.
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TWO DIMENSIONAL SPECTRUM

•, cm-1  I I

50%
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0. 0 0-:-1 0.130 0.90X100  HZ

Figure 4. Spectrum of two sinusoids calculated by transforming

the truncated (5X5) known spatio-temporal autocor-

relation matrix with zeros appended to extend the

autocorrelation 'matrix to 29X29. Contours are the
same as for Figure 3.
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TWO DIMENSIONAL SPECTRUM
cm" 1 I I__

.,--0- m I

50%

CI 11I I\

0. C031 0.6-0 0 90)(I1OnHz

Figure 5. Spectrum of two sinusoids calculated via the algo-
rithm~ described in the text, by extending the 5X5
autocorrelation matrix to 29X29. Contours are the
same as for Figure 3.
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Spectral Es'timation and Signal Extrapolation in One and Two Dimensions

Anil K. Jain*

Signal and Image Processing Laboratory
Department of Electrical and

Computer Engineering
University of California
Davis, California 95616

ABSTRACT

In this paper, we consider extrapolation and spectral estimaton of dis-
crete time (or space) signals in one (or two) dimensions. The 7aper is
divided into two parts. In the first part, we present some rgcent results
[6] for extrapolation of bandlimited discrete time signals. 'These results
show the relationship between several recently reported extrapolation algor-
ithms by Papoulis, [1], Sabri and Steenaart [2], Cadzow [3] and others [4,5]
and also yield some new algorithms. In the second part/first we show how
the one dimensional algorithms could be extended to two dimensions. Then
we introduce a two-dimensional semi-causal predictiou, algorithm For spectral
estimation of discrete random Fields. This algorit;im requires solution of
linear equations and realizes a particular minimum variance ARMA model for
the spectral estimate. It gives superior resolution compared to two-dimen-
sional (FFT based) periodograms or the two-dim1i'sional and autoregressive (AR)
spectral estimates. /

PART ONE: EXTRAPOLATION OF DICRETE TIME BANDLIMITED SIGNALS

1.1 Problem Definition

A discrete signal y( = 0, + 1, + 2,..., is called bandlimited if
its Fourier transform

Y(; y(k)exp(-j27Tkf), < f <_ 1

satisfies the rel(tion

*Research supported in part by the Army Research Office, Durham N.C. under
grant No. DAAG29-78G0206 and in par't by RADC under a Multi-effort Post Doc-
toral program. Paper presented at RADC Spectrum Estimation Workshop, Rome,
N.Y., Oct. 1979.
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Y(f) 0' - > Ifi > o (2)

This implies y(k) comes from bandlimited continuous signal which is over-
sampled with respect to its Nyquist rate. This occurs quite often when a
system observes signals over a wide bandwidth. We are given a set of time
limited, noise free observations

(k) -M < k < M
z(k) (3)

S0 , otherwise,

Given {z(k)}, the problem is to find an estimate of y(k) outside the interval
[-M,M]. We define the infinite vector

Sy = ... y(-k) ... y(-l),y(O),y(1),...,,y(k)...]T 
(4)

a bandlimiting operator L, and a time-limiting operator N, as infinite ma-
tr~ces, *

L.sin2Tr(i-j
'e~j , Ii~ --.- j- - , i,j = 0,+l,+2 ... (5

1 , i=j, -M < i, j < M

W0 otherwise (6)

1.2 Properties of L 0 

1

1. Let S be a (2M )x- matrix operator whose elements are

1, j=j=+l,+2,...,+M
,j) =

0, otherwise (7)

Basically, S maps (2M+l) elements from an infinite vector into a finite

vector. Consid I the (2M+i)x(2M+I) matrix L- SLST and the matrix STS - w.
The operator W replaces the elements outside [-M,M] of an infinite yector by .'

zeros. S rapolates the elements of a (2M+l)xl vector by ze/

2. e operator L is idempotent, i.e., L 2=L. 78
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3. For every M <c, L is positive definite. Moreover, all the eigenvalues
of L lie in the interval (0,I) i.e., 0 < X(C) < 1, M < •.

For proofs of these and other properties see Jain and Ranganath [6].

1.3 Matrix Formulation of the Extrapolation Problem

Let y(k), k=O,+l....be a discrete-time, bandlimited signal as defined in
(1) and (2). If z denotes a (2M+l)xl vector of the observations, then z = Sy.
Since y is bandlimited, it must satisfy Ly = y, so that we can write

z = SLy. (9)

Now, if we define an - x (2M+l) matrix

H = SL (10)

then (9) becomes

z = Hy (11)

where z is a (2M+l)xl vector and y is an infinite vector. The extrapolation
problem is now, simply, to find an estimate of y given z. Equation (11) as
such does not have a unique solution because H is a rectangular matrix. In
other words, for discrete bandlimited signals given over a finite interval,
if is not possible to extrapolate uniquely. One way to make the solution of
(11) unique is to look for minimum norm least squares (MNLS) solution defined
as

y minflyI12 ; HTHy = Hz] xl2= xxx 2

Note tnat a solution of HTHy = H zminimizes the least squares -error 1lz-HylH1y+
is that least squares solution which has the minimum norm. Conceptually, the
problem is quite straightforward now and a large number of'algorithms are
available to find y+. Using the definition of H [see(lO)] and the properties
of L, these algorithms assume simple form in many cases and will be briefly
stated.

We note that a continuous bandlimited signal given over any finite interval
is analytic and can, therefore, be extrapolated uniquely to its original
values outside the given interval.

1.4 Iterative Extrapolation Algorithms: Let y represent an estimate of y at
nth interation. Following [6], we can wrile down the gradient and the
conjugate gradient algorithms as follows.

1.4.1 The Gradient Method

T T
S= + 0: (z-Hy) YO 0, 0 < e < 2/a (H H) (12)

Yn+l' max
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Using (10) and the properties of L, this equation simplifies to give I
Yn+l :fl + (I-cLW)yn' yO = 0; fl HTz = LSTz (13)

Convergence is achieved for O< <2 <2 /Xmax( L). Now it can be shown by induc-

tion that since fl is bandlimited i.e., LfI = fl, each Yn is also band-

limited. Hence, (13) can be written as

Yn+l = cfl + L(I-cW)y (14)

For c=l, this becomes the discrete version of Papoulis iterative algorithm
[l] reported in [2]. However, the convergence would be best (for constant
E) if we let

=opt = 2/((X min(HTH) + Xmax(HTH)) = 2/X max(L) > 2 (15)

Further improvement in convergence is obtained if we go to the steepest descent
[6] or the conjugate gradient algorithm. Thus, it is seen that Papoulis'
method, based on a successive energy reduction method (see Gerchberg [4]),
is a special case. in the class of one step gradient methods. It is easily
shown that yn converges *to y+ [6].

1.4.2 Conjugate Gradient Method

Usn th prpet an{teonugtUsing the property .L2 = L, the gradient vectors gkand the conjugate
direction vectors {dk} can be shown to be bandlimited and this algorithm
becomes

Yk+l Yk+kdk ' YO = 0

dk+l = gk+ d = -g 0

T
L~y - LS z g 1 c 1LWd 1

gk = Wyk - Sz =gk-l+C'k-lL k-1

(16)

M M2
= gk+l(n)dk(n (dk(n))2

k n= -M ky)( n=-M M

M M 2k d k n(kn-[ (d k(n))2

n n:M ))/nM

This is a two step gradient algorithm and iteration by iteration, has better
convergence than the ordinary gradient method discussed earlier.
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1.5 Generalized Inverse Extrapolation Filter

The generalized inverse of H is given by

H+ = HT(HHT)-I = LST(SLsT)I LsT L (17)

which exists since L is nonsingular. Hence we can directly evaluate the
MNLS estimate of y as

y =Hz (18)

In practice, L could be quite ill-conditioned depending on a and M and has
to be stabilized [6]. This can be done by either using a singular value
expansion in which terms corresponding to small eigenvalues of C are dis-
carded or by adding a small positive quantity to the diagonal terms of C
in (17). The generalized inverse of (17) is called the Extrapolation Matrix
in the context of signal extrapolation. It has appeared in the context of
image restoration, see e.g., Helstrom, Rino, Jain and others [7-9]. Recently,
it has also been derived by Cadzow by a different procedure for signal ex-
trapolation. Another extrapolation matrix (whose size is infinite, if we
extrapolate the signal to infinity) has been suggested by Sabri et al [2]. In
[6] we show that this matrix does not exist and its finite approximation (used
in [2]) is ill-conditioned.

1.6 Discrete Prolate Spheroidal Wave Functions and Singular Value Expansion

It is known that a continuous band-limited signal can be extrapolated
outside its observation interval, exactly, via the PSWF expansion [10]. In
the case of discrete signals, a similar expansion is possible when we con-
sider the minimum norm least squares extrapolated estimate via the singular
value expansion of the matrix H [6].

Papoulis and Bertram [11], Slepian [5] Jain and Ranganath [6], Algazi
[12], and others have studied the properties and applications of these func-
tions in digital signal processing. For singular value decomposition of

T T
H : SL, we consider the eigenvalue problems associated with H H and HH , i.e.,

LWLýk = Xkqk, (19)

SLST ,k = Xk k' - M < k < M (;,0)

where Xk > 0, and {hk} are -ox 1 and {ýk} are (2M+l)xl orthonormal vectors. . t

can be shown that qk must be bandlimited vectors,(i.e., Lqk = qk), and

are related to ýk via the relations

1
k= •vk Sýk (21)
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k LS T k (22)

Equation (21) states that (2M+l)xl vector 'Pk is simply obtained by selecting

the (2M+l) elements {#k(m), -M <m < M} of qk and scaling them by

Equation (22) is remarkable in that the o-xl vector hk is obtained by simply-112
low pass filtering the sequence {'k(m)} and scaling the result by Ak 2

This means Pk is the ixtrapolation of lk' obtained by simple low pass

filtering and scaling. Also noteworthy is the fact that the sequence
{4k(m), -0< m < 00) is orthogonal over the interval -M <_ m < M as well as

over the infinite interval. This property is similar to that of the contin-
uous PSWFs. The extrapolated signal is obtained by writing the singular
value expansion

+ M _I_ T

H I M kT (23)
k= M k

++which gives y = H z,as

+ Mak T M (24)
y ( - hk(ml)' ak 4)k z X 4 (k (m)y(m)

k Am=-M

It is easy to check that y (m) = y(m) for mc[-M,M].

1.7 Mean Square Extrapolation Filter

In the presence of additive noise, uncorrelated with y, (15) is modified
to give

z = SLy + n = Hy + n (25)

where n is the (2M+l)xl noise vector. Now we look for the best linear mean
square extrapolation of z and is given by the Wiener filter estimate

y = RLTsT (sLRLs + Rn) z (26)

where R and R are the autocorrelation matrices of y and n respectively.
n

Since {y(k)} is a bandlimited signal, LRLT = L[EyyT]LT E[(Ly)(Ly)T
Ey y R. Hence, the above equation becomes

yT~~~ T I~1  [L)L)
^:RLST (SRST+ Rn)-y
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In the worst case when we do not know R, one may set R L. Now, if Rn+O,

y-y , the MNLS extrapolated estimate.

1.8 Recursive Extrapolation

Now we present a recursive least squares algorithm based on Kalman
filtering techniques where the extrapolated signal estimate is updated
recursively as a new observation sample arrives. From (25), the kth obser-
vation z(k) can be written as

Tz(k) = hky + nk k = 0, 1,... (27)

where hk is the k row of L and nk is zero mean white Gaussian noise.

The state equation for the unknown extrapolated vector y can be written as

Yk+l = Yk' Yo = y' cov(yo) - Po = L ! fk-.O (28)

The Kalman filter associated with equatinns (27)-(28) is called the recursive
least squares filter and is given by

Yk+l = Yk + gk(z(k)'h ky), Yo = 0 (29)

t hwhere Yk is the k estimate of y anu 9k is the Kalman filter gain. Using the

properties of L, the Riccati equation which is associated with the Kalman
filter can be simplified considerably. Details are given in [6].

Exanip es:

Let the observations model be

z(k) = sin (.099rik) + sin (.08511k) + nk, - 8 < k < 8

It is known that the spectrum of the signal lies in the interval
[-.l,.l] i.e., u=0.l. Figure 1 and 2 show the original signal y(k) and the
observations when there is no noise. Figures 3, 6, and 4 respectively show
the extrapolated estimates obtained by the Papoulis (30 iterations), the con-
jugate gradient (10 iterations), the generalized inverse algorithms. In
theory, these algorithms are equivalent. However, due to differences in their
numerical properties, the results are different. Faster convergence of the
conjugate gradient method is evident from Figs. 3 and 6. Although the gen-
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eralized inverse of (17) alWays exists, it exhibits instability (Fig. 4)
due to ill conditioning of L. However, the stabilized inverse of (24)
improves the extrapolated estimate (Fig. 5) greatly. When the observations
contain small noise (SNR-21.6dB) performance of these algorithms is consider-
ably degraded. For example, Fig. 7 shows the result ol" the conjugate gradient
method. This is not unexpected because the noise was not accounted for in the
extrapolation algorithm. The mean square extrapolation filter (Fig. 8)
greatly improves the result. Application of these algorithms in spectral
estimation radar signal processing are considered in [6].

PART TWO: TWO DIMENSIONAL EXTRAPOLATION AND SPECTRAL ESTIMATION

2.1 Extrapolation of Bandlimited Sequences

The results of p:;rt one can be easily extended to a two dimensional band-
limited sequence y(m,n) which is known over a finite observation window say,
[-M,M]x[-M,M]. Then using Kronecker products and mapping y(m,n) into a
lexicographically ordered vector g(k), we can write an equation unalogous
to (9) as

Z- SLy, S = SOS, L = (30)

The properties of the two dimensional low pass operator L can be deter-
mined and the two dimensional version ofi the various algorithms can be de-
rived. For example, the gradient algorithm corresponding to (13) becomes
(after using properties of Kronecker products of matrices)

Y'n.l : ýFl 4 Y - uLWY WL, F1  LSTZSL, YO = 0 (31)

where Z is the matrix of observations on [-M,M]x[-M,M], and Y 'is the (-xx,)
extrapolated MNLS estimate of Y at iteration n. This algoritkm is simple in
that it requires separable row by row and column by column operations. De-
tails of this and other two dimensional version ofi the foregoing algorithms
will appear elsewhere.

2.2 Two Dimensional Maximum Entropy Spectral Estimation

For abandlimited sequence, a spectral estimate can be obtained from the
Fourier transform of The extrapolated signal. The foregoing extrapolation
methods become inapplicable when sampling is done at the Nyquist rate. For
one dimensional sigqnals, autoreogressive (•AR) or equivalently the maximum
entropy (ME) method have been found useful in obtaining high resolutionspectral estimates. In this case, the solution of the nonlinear ME spectral
estimate equations reduces to an equivalent set of linear Toeplitz, AR
equations which are easily solvable. This Lquivalence between the ME and AR
methods is due to the existence of spectral factorization theorem in one
dimension. In two dimensions , if we are Aiven, say, the autocorrelations

{rm,in ) on a rectangular window W* = [-),p x[-q,q], the ME estimate of the
spectral density function (SDF) must be the form
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S(z ,z2 ) Jra izll z2 Iz21 l (32)
./Lm,ntW*Qm'nzl I

where fam n} must be determined from {r I given on W*. Now, if irm n I
is a positive definite sequence on W*, it is not sufficient to guarantee a
positive ME spectral estimate. In other words, che array (r m,n defined on

W* need not have any positive definite extension1 . [14,15]. Desides existence
difficulties, the nonlinear problem of determining amn can no lcnger be re-
duced to a 'linear problem (as in 1-D case) of autoregression. This is be-
cause factorization of a two dimensional rational SDF as a product of two
complex conjugate rational functions is not always possible. Hence, if the
ME solution existed, one would generally resort to iterative methods e.g.,
see [13]. Unfortunately, there are convergence difficulties and the results
do not seem to be very attractive.

2.3 Discrete Random Fields and their SDFs

An obvious extension of one dimensionai AR spectral estimation method is
to assume that the SDF to be estimated has a stationary random field realiza-
tion

Ui : U •mnui-~- + Lij u~~ikjX r(k,Z) (33)

uiEu ,n'1
u. =,n i-,- iju14-k,j+Z Nwhere (ui }, is a two dimensional discrete random fiel.d and S is a set of

suitably chosen index pairs (w,n). We define

Z • ui u, (34)

as prediction estimate of u., j and Li,j is the prediction error. We consider
three types of predictors characterized by S as (see Fig. 9)

{nl ,Vm)•Ufn--O0,m>l} I Causal model (35a)

S : (n>l,Vm}Ufn=O,Vm / 0}; Semicausal model (35b)

(V(m,n) ý (0,0)) ; Noncausal model (35c)

The "causal model" (35a) defines causality in the sense of raster scanning
the field (ui j1 column by column. Often one is interested only in represen-
tations where oL m,n are non-zero only over a finite window W, called the pre-

diction window, which is a subset of S. In that event (33) is a stochastic

I-This was pointed out to the author by B. Dickinson [15].
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difference equation which realizes the rational SDF
S z - z)'Ll -m -n,Su(Z~iZ 2 ) = SE (zI' • Y cm nzl z2 "][l- n nln (36)

/ t, neW m ' 2 .~e ~

where S E is the SDF of {i In general, (e..} could be a moving averagefield., ''
2.4 Minimum VarianceL ersntationn

24Mnm Vain_Represent (MVRs): If, for a given W the randomT"ed o 7i such7C7ee . }) that the prediction error has theminimum variance, then it is called anMVR. The orthogonality conditionassociated with sucharepresentationrequires that Ec.i*u.0, wheneverm,ncS which gives i , 3j w e

r(k,Z) - a m r(k'mt-n) = / 2 k ; k,ZtSO (37)m,neW 'kOaZ,0 (
where S0 =SU[,O]., Defining a 0 "1 and W0 = WULO,0], and mapping thearrays {fx m,, fu },n)' defined on W into vectors a and u respectively (37)
reduces to the equation

R•_ f3 2 1 or L_ = -ý2R I_.1l = .f32 bi 0  (38)

where R is the covariance matrix of the vector u. The vector, 1 takes a
value 1 at a location, say io, which corresponds to the (0,0) )ocation in the
window WO; and b1  is the ioth column of R-1 . Since a0 ,0 = -1, one obtains
from (38) 0

2 = i/bio0io) (39)

Once 132 is obtained, a is directly computed from (38). Thus, we need only the(block Toeplitz) matrix R to solve for 13 and a.

2.5 Causal Models and AR Spectral Estimation:

A conmion example of causal prediction is to consider Wo=[O,p]x[O,q]
which gives rise to a (single quadrant) predictor, causal in each dimension.The orthogonality condition for these models requires .i,j to be a white noise
field so that S E:2 and the spectral density function is

Su (2/1'I- 1 1 a • nZl M -rI ;IZll= 1, 1z21=l (40)

m1,n Wm,n 1 2  2
where {am,n] are obtained via (38) and (39) with io=l and R is a (p+l)x(p+l)

block Toeplitz matrix of basic dimension (q+l)x(q-l) i.e., R = fRi.j},
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0 < i j <p, where R k f r(k,i-j)} 0 > i, j >q. Comparison with (32)

shows that the SDF estimated via (40) is of the form of (32) since we can
write the denominator polynomial in (40) as in (32) via the relation

aiiiri -1 m, --n i =O j=0 i 'i i 4,11,j 4n ;~ *(1

where cx. 0 if (i1j)VW 0 and W* is the window E-p,p~jx[-qxqj. The element

of the block Toeplitz matrix R~ are defined on this window. However, in gen-
eral, the coefficients (a }1, , (and the SOF) obtained via (38)-(41) are not

the quantities that one would obtain by solving the ME nonlinear equations.
Alternatively, the cuvariances realized by the random field of (33) whose.
f~x ) are determined via (38)&(39) (from a given positive definite R ob-
taPidd from given aut'ocorralations r(k ,t) on W*), need riot match exactly the
given values r(k,X.) on the window W*, If the two sets autocorrelation matched,
then (36) would also be the ME spectrum.

As an example,, consider, the autocorrel aticon modelI .

r(m,n) =coý2ii (O.Oni±O. 2r) + 0 licose.ii (0,2m+40.05n) + 0.256 6~n' (42)

Th SDF has two delta functions iit (.0b, .2) and (.2, 0.05) in the positive
quadtrant of the freqjuency pl'ane. Assuming r(m,n) are available on a bx5
window W* = [.-?,2]x[2 ,21 ((p=q, 2), the spectr'um~ estimated ihccording to (40)
is shown as a contour plot in I'ig.10. The two original peaks have merged in-
to a single peak at roughly half" way between thoso peaks. Increasing the
sizu (if the obsorvation window to 7x7 orhighurdid not improve thle resolution.
This is so because many covariance functions may not be real izaL~le even by
an infinite order (pq)single quadrant causal models. Other caiusal
structures such as non-symmetric half pl1ane model-s may improve results, but
the order, of thle miodol requi red to achieve desi red resolut ion my be pro-
hi biti voly hi gh.
2.6 Sjpec~tral Estimation via Semi causal Model s

In the case of somicausal, model s, thle 1riredictioii window selects samples
widch are iiithe past in one of' the di-rections and in tha past as well as future
In the other direction. Correspondingly, the model allows prediction on a
symm11etric half' lane As an example, let the prediction win-

~oi~rW] 1]'~. The maximum variance condition oppl ied at rr=O
7requires Lc ii ~u~. 1 1 i fl , ,wihyed h odto

Sr 012 [1 6 +

Hence the iD of: cn~i m o (4)s



""Fs 'o~zl )i (44)
I mni~l 1 .

This implies {.i,j} is a moving average field (in the 'i' variable) and is a
white noiseý field in tne 'j' variable. The SDF realized by this model is of
the form

Su(Z]z 2 ) S I- z -m nZl 12 ;zll1, 1z21:l (45)U 2) Ct' illL nE:W m' 1= ' I 2

which in view of (43), is not necessarily an "all-pole" model (unless Se is a
factor in the denominator polynomial). Corresponding to (38) and (39) here
i0 = p+l, iR is a (2p+l)x(2p+l) block Toeplitz matrix of basic dimension
(q+l)x(q4-l) i.e., R = {Ri.j}, -pSi,j.p; Rk = {r(k,i-j)), O<i,j<q, and a_ and I
are vectors of size (2p+l)(q+l). Thus the elements of R are defined over a
window W*=[-2p,2p]x[-q,q].

Some interesting and important facts about the foregoing semicausal
model- are in order (1) Comparison with (32) shows that (45), in general, is
not-a maximunl entrop)y spectrum, since it is not an "all-pole" model. (2) The
"S-1enl•a-U rpal- resenta-tion -o-f(33) where S=W and Ui,j } is defined in (43),
is a special autoregressive moving averagej_(ARMA) model of a two dimensional
random field. (-3•-7h main equation--, (N), for-o--inng the spectral estimate
is linear.

Examples: Consider the autocorrelation function

r(m,n) = sin2'ir(m+n)/8 + sin2'fr(m+n)/8.05 + 7% white noise (46)

and the window W0 = [-2,2]x[0,2]. Thus',r(m,n) are available over W*
[-4,4]x[-2,2]. Figure 11 shows that the FFT based periodogramn is unable to
resolve the two closely spaced peaks which should occur at [0.25,0.25] and
[0.2445, 0.2445] in the first quadrant. However, the semicausal model spec-
trum (Fig. 12) easily resolves these peaks.

Remarks

1. Semicausal models are not only useful in high resolution spectral estima-
tion, but also in finding random field realizations of known spectra (i.e.,
spectral factorization). For example, consider the irrational covariance
function r(m,n) = exp(-.05/k2+Z2). Table 1 compares the mismatch of the model
covariances with the actual covariances on a 5x5 window, for causal and semi-
causal realizations of equal order. Clearly, the semicausal model provides
a much better fit.
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2. Minimum variance semicausal models were first introduced by Jain in
[16] for semirecursive filtering of images. Such models lead to algorithms
which are recursive in one of the (causal) dimensions and are nonrecursive
in the other (noncausal) dimension. Often, the nonrecursive part of the
algorithm can be implemented via a fast unitary transform yielding an ef-
ficient overall algorithm. Such models also arise when one considers finite
difference ap>roximations of parabolic partial differential equations [17,18].
Applications of such models in image restoration and data compression have
been studied in [18-21].

3. It can be shown that any minimum variance semicausal model of finite
order (i.e., the transfer function is-rational) can be factorized to yield
a minimum variance causal model (i.e., an AR model). In general, this causal
"model would be defined on a non-symmetric half plane (NSHP) and would be of in-
finite order. In practice, one may obtain an -pproximate rational, causal
NSHP realization of semicausal model (or equivalentlyiof ts SDFFT-by a suit-
able truncation of this factorization (consistent with stability requirements).
The foregoing procedure is therefore applicable for design of semicausal and/
or causal digital filters whose magnitude of the frequency response isspecified,

4. For separable spectra (i.e., S(z1 ,z 2 ) = Sl(z 1 )S2 (z 2 )), spectral facturi-
zation is possible and therefore, the two dimensional causal, semicausal and
noncausal MVRs as well as the ME method, all yield the same estimates.

2.7 Noncausal Models

The equations for noncausal models can also be derived by specifying
W and using (38) and (39). The minimum variance condition for such models

requires L, to be a moving average field with SDF

: 2[i _11 _•~nl n] (47)

Sc m,ncW nm z 2 "

where W is a noncausal window (e.g., W0 = [-p,p]x[-q,q], W0 = WU[O,O]).

Using (47) in (36), it is seen that the SDF of u i~ is an all pole model

and is therefore of the form of ME spectrum, However, due to existence dif-
ficulties explained earlier, an admissible covariance matrix R would not
guarantee a non-negative spectrum. Hence the usefulness of these models in
spectral estimation is severely limited.

3. CONCLUSIONS

In sunmnary, we have considered extrapolation and spectral estimation
algorithmsfor discrete signals in one and two dimensions. For bandlimited
"(oversampled) signals observed over a region of finite (and small) support,
we recomm-end the signal be extrapolated first followed by a suitable spectral
estimator (e.g., ME or, smoothed periodoqram etc.). Several existing extra-
polation alqorithms were shown to be unified under the minimum norm least
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squares criterion of extrapolation, and was shown to yield new improved ex-
:- trapolation algorithms via the conjugate gradient, least squares and recur-

sive methods. For other two dimensional sequences, the minimum variance semi-
causal models seem to yield high resolution spectra compared to other methods.
It requires solution of linear equations but yields an ARMA spectral estimate.
Not described in this paper, are the implementation and other obvious practical
considerations such as i) efficient solution of the block Toeplitz equations
(38),(39),ii) use of two dimensional data (rather than autocorrelations
r(k,Z)). iii)determination of the order of the model etc. These and other
related considerations as well as details of semicausal modeling are reported
in [22].
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2 Figure 10: Causal Model Spectrum Contours

Table 1: Comparison between Causal and Semicausal Random Field Realizations

.95 .894 .868 .°208I .315 .389 j 039 .041 .047
n .951 .932 .894 n .111 .231 .315 n4 .019 .025 .036

t 1.00 .951 .905 t 0. .1II .208 + 0. .017 .031

-4n -* -*I1

A-tual covariances r(m,n) Causal M~del Covariance Semicausal fhodel
rk -m-,n):r(m,-n)=r(-ml,-n) Mismatch Covariance Mismatch
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ANTENNA SPACIAL PATTERN VIEWPOINT OF MEM, MLM,

AND ADAPTIVE ARRAY RESOLUTION

WILLIAM F. GABRIEL

Radar Division
Naval Research Lab

Washington, DC 20375

Abstract

The Burg maximum entropy method (MEM) and the maximum likelihood method
(MIX) nonlinear spectral estimation techniques are conpared with their simi-
lar adaptive array antenna counterparts. The comparison permits an examina-
tion of their principles of operation from the antenna array spacial pattern
viewpoint, and qualifies their superresolution performance behavior. Also,
the real-time adaptive resolution of two incoherent sources located within
a beamwidth was simulated, and results are presented over an array output
SNR•range of 0 to 40 DB.

Introduction

Adaptive array processing techniques are being investigated to determine
their applicability to high-resolution location of sources/targets. The work
was motivated by high-resolut'-:n performance reported in the field of spec-
tral analysis in recent years, r'rticularly from the two nonlinear techniques
generally identified as the maximum entropy method (MEM) [ 1-3) and the maxi-
mum likelihood method (MLM) [4-63. MEM and MIM bear a vury close relation-
ship to nonlinear adaptive array processing techniques. 4t is the purpose
of this paper to point out a few of these similarities, examine their
principles of operation from the "spacial filter" pattern viewpoint ofi
adaptive array antennas, and to discuss some of the limitations to be
expected in their suparresolution behavior.

M1,M and the Adaptive Sidelobe Canceller

lhe Burg MEM has been shown to bu equivalent to least mean square (LMU)
error line!r prediction [7-9], where an optimum V, point prediction filter
predict4 the nth value of a sequenc( from K past values.

K
YA 'k Yn-k (1)

k-I

where is the predicted sample, the a are optimum weighting coefficients,

I
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and the K past samples of y~ are presumed known. Define the difference
between this predicted valued and the. true value of y1 US the error, En' whlich
is to be L4S minimized oveL u larger data sequence 2~ N nainples, N > K.

El (y I', . Yl (2)

Thec Z-trwnsforxns associated With this discrete convolution may be ý;rittan,

E(z) I -za Y(Z) (3)

where the expression within the brackets mlay be defined as the filter trails-
form function, 11(z), consisting of a polynomial With K roots or zero fact:ors.
If we optimiZU the weights a,, in such a manner that the Spectrum of C
approaches white noise, theon theu unknown spectrum of the input is approxi-
mated by,

IY~s (CONSTANT) (4)

Cotiversion u1i the above lillear prediction iltcr toU a weAighted lineoar
array of Spaeial sensaors in straiSghtforwaLrd [10, 1111, with the hlimplest coa-
figuration illustrated inl Vig. 1. We antiume thatL our sensor elements aru
equally spaced, and thmAt narvowband ti. eLing precedes our ý;~ioUlJ duuul~it
processing. The nthl "sniapshot"' sign~al sampleI Ut thu IkLh leiin UIILWill C011usi~t
of, iadupendoen, gaussian receiver noiue, '11,1, pluts 1 ilncoherent 14OLurce VOUt
ageu,

L.ki lm 1 J j .(Itu 1 ~in 1 -; k !5 K()

Where u 2i - r i~Lsi 0

d w elementL sp)acing, assumed near X/2

X - Wavelength

0i -SIpaCial locationl angle of i source

J u amplitude of ih s1 ource

Oin random phaseu of i th source, n l LU~pl
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A 'IsnapshuOt is defined as one simultane1ous3 sampling of thc a~perture s~ignals~
at alaray liumut, and we asumexu that Nsasoso aaaeaalbe

loas t th cocluionLha itisidentical in configuration to a special

uubcusucomonlyrefrre to in th iU oathur asnu a.L th pi.ulo caclent r"o h

[1, 33 typtical~ sidulthu dutv ducanceller totgton fron Apliebarm pr13].

unda bhemi ahould die ntey toa tahieva better~o mandurlutan "elemeth isup

way or mayno berioqunanc bspacied. A~o arte pesigntd ithtob oprealted operati

baui of anya sucsite iunapuion (asstumn aradigital opraion biecausy thei
adapoiuted ti generlly ionvoles~ue wha ichd sig ~naols andre o abundnc tof
iti~udiuruneu adaptedpata.'ter and iay readiely be fil~ter irni tiw unveo tat

aforceivruple hu oaiance prutixLtii 3]sgal, h paecu~ro h

wait-oa * (6)u

Ilopr~uic u ieadL)iu ldl~OLI~lu uuu ier-rdc

LiollfioLV isohatLhu, spaia (7) u~uuaayiui ul-uuo

Nu ca4eapiddrcl oahuuabLu nuuadn fLuspr
roouio utumuu uaio. AIu+u pitiuLa ra-if prailis~ ~ L vedl civdvamu ftocrriLaatv luilpoie

LhL li tulbr f ldlLJIUSiUJ~fiill L IULI (UIVI~UICUi21hienn
Uutiorgtieuwayrequre u litleau 2unauhut oras mny s seera

(IlouU4111d dualii;uulUupr~tlrLL~rtmadtuprw~r fLI
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where H is the nLh "snapshot" signal sample vector whose element components
are given by equation (5), M is the nth snapshot contribution to the covar-
iance matrix, M is the supile covariance matrix averaged over N snapshots,
S is the quiescent weight steering vector, p is a scalar quanqity, and W
is the optimum weight vector. Note that the steeriuv5 vector S injects a
zero weight on every element except for the end element, thus causing the
quiescent pattern of the array to be that of the single end element. Fig. 3
illustrates a typical quiescent (single element) pattern and an adapted
pattern obtained from an 8 element linear array with two far-field, incoher-
ent, 30 dB sources located at 18 and 22 degrees. The adapted pattern weights
were computed per equation (6) from the inverse of the covariance matrix
averaged over 1024 simulated snapshots. Note that the two pattern nulls
(zeros) align perfectly with the locations of the two sources. Of course,
the array signals in this simulation were corrupted only by receiver noise
(no element errors are included) and an uvarago over 1024 snapshots iu
indeed steady-state. Another important point to note is that nulls in such
an adapted pattern may be located arbitrarily close together in terms of
beuamwidth, without violating any physical principle. Yet, because the nulls
have served to locate two sources within a beamwidth, one may describe this
as a "1suporreooluion' pattern.

It is readily shown that this adapted pattern is obtained by subtracting
the summued array output parttrn from the element (mainbeam) pattern and,
furthurmore, that the sununed array pattern consists of properly weighted
"luienvector beams" [141. Written in terms of the cigunvector weights, we
can express the optimum weights in the form,

K

B
W - (1tqi-

qi £i

where " is the ih eigenvector of the covariance matrix, 1B is the i
eigeuvalue, and 1 is the smallest eigenvalue corresponding to receiver
noise power. Note that only the significant eigenvectors corresponding to
B. > 13 need be considered here. An adaptive array forms one such cigun-
vector beamu for each degree of freedom consumed in nulling out the upaeial
source distribution. Fig. 4 illustrates the two eigenvector beams required
for this two-source example. It should be emphasized here that the true
resolution and signal gain of the array is reflected in these eigenvector
beams. They demonstrate the importance of having as wide an aperture as
possible, because the superresolution capability in the adapted pattern is
a percentage of the true resolution of these beams. Also, since the super-
resolution uulls are form•ed via the subtraction of these beame of conventLioul
width, it follows that the nulls will be rather delicate and very sensitive

4
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to system imperfections and signal fluctuations. 4
The desired "spacial spectrum pattern" is then obtained from equation

(4) as simply the inverse of the adapted pattern. Fig. 5 illustrates this
inverse for the two-source example, in comparison with the output of a
conventional bemu scanned through the two sources. Several comments are
in order concerning ouch inverse patterns:

a. They are not true antenna patterns, because there is no combination
of the elment weights that could produce such a peaked spacial pattern.
Th~ey are simply a tunction compute•d from the reciprocal of a true antenna
pattern.

b. Linear superposition does not hold in either the inverse or the

original adapted pattern, because of the nonlinear processing involved.

c. The heights of the peuks do not" correspond with the relative
strengths of the sources, because the depths of the adapted pattern nulls
do uot. I:n goneral, the adaptive null depth will be proportional to the
square of the SNR of a source L144, but even this relationship fails when
there are multiple sources closely spaced.

d. Tlere is no real-signal output port associated with such a pattern,
because it is not a true antenna pattern. An output could be simulated, of
course, by implementing the equivalent all-pole filter and driving it with
white noise.

e. They do emphasize the locations of the zeros (nulls) of the
adaptive array filter polynomial.

f. They are inherently capable of superresolution.

g. They achieve good "contrast" with the quiescent pattern background
ripple (equivalent of "sidelobes") buecause of the aforementioned proportion-
qlity to the square of source strengths.

h. Spacial infomnation is gained beyond that obtained from a conven-
tional array beam which is scanned through the sources, because the array
degrees of freedom are utilized in a more effective, data adaptive manner.

To get a feel for real-tLime operation performance with realistic weight
update averaging, simulations were run in which an eight element array had
its weights computed from the Howells-Applebaum recursive algotithm 1'153.
Weight update averaging was performed via a dynamic time constant in accord-
ance with the reciprocal of the closed-loop bandwidth, o,
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"o + T P (r1)
H-- 1 + Pr,

L where T - quiescent conditions slow time constant

T - high-power fast time constant

- snapshot power ratio ( S + N )er 12

where we approach the value, 0/2, under quiescent conditions when Pr ; 1,
and we approach the value of T when P >>I. This formulation permits us to
satisfy the 10 percent bandwidth critrrion at high power levels to avoid
noisy weights E14] by choosing the value of T - 3.2, and yet the quiescent
condition time constant need be nQ worse than T = 200. 'The larger value
for 7o is necessary in order to have a relatively stable quiescent pattern.

Fig. 7 illustrates typical snapshot spectrum plots, after convergence,
for our two-source case at two different SNR levels. Note the considerable
fluctuations which occur in these plots near the peaks, which merely reflects
the null fluctuations in the adapted pattern. Ihe deteriorating conditions
exhibited in Fig. 7b are indicative of the resolution capability nearing its
limit, i.e., if the source power levels are reduced further, then the adap-
tive array cannot resolve them at that particular spacing.

A sunmnary of the approximate resolution capability limit for the
adaptive array spacial filter operating against two incoherent sources is
illustrated in Fig. 8. Th1is performance curve 4,s universal in nature because
the abscissa is source separation in beamwidths, and the ordinate is source
SNR measured at the array output, i.e., element SNR multiplied by the number
of elements in the array. Thus, the curve can be utilized for any number
of array elements in a linear array configuration. Note that at low ordinate
SNR values, we actually have negative SNR at the elements. The curve tells
us that we can separate two sources at arbitrarily small spacings, provided
we have sufficient SNR and, also, provided that our element data samples I
are sufficiently accurate. Recall that the simulations involved here did
not include any element errors.

If there are more than two sources within a bemnwidth or if coherence
exists among the sources, then difficulties mount rapidly and the filter
null points may not accurately represent the spacial locations of the
sources,
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MLM and Adaptive Directional Constraints

The maximum likelihood spectral estimate is defined as a filter designed
to pass the power in a narrow band about the signal frequency of interest,
and to minimize or reject all other f-requency components in an optimal
manner [4, 5]. This is identical to the use of a zero-order mainbeam direc-
tional gain constraint in adaptive arrays [16, 17], where the "spacial
spectrum" would be estimated by the output residual power, P., from the
optimized adapted array weights,

-*t

01W 
(12)Po --o -- o 12

where We -plM S (optimized weights)

M - covariance matrix estimate

S - mainbeam direction steering vector

= scalar quantity

Under the zero-order gain constraint, we require stw = 1, whereupon p be-Under~~~~ -hoeoore e

come s

. t-S*)- 1 (13)

Substi'uting i and W into equation (12) then results in,
0

Po s1 (14)
Po " stm•s

1*

Upon sweeping the steering vector, S , for a given covariance matrix inverse,

P. will estimate the spacial spectrum. Interestingly, this result is ident-
ical (within a constant) to the spectrum obtained from the inverse of the
output residual power from an unconstrained optimized adapted array, and
the principle of operataon is the output from a continuously adapting pattern
formed by subtracting eigenvector beams from the quiescent uniform illumina-
tion steering vector "mainbeam" as it scans.

Fig. 6 illustrates the output spectrum plotted from P for the two-
source case utilized for Figs. 3,4, and 5. Note that in comparison with

SFig. 5, this MLM spectrum has peaks which are about 18 dB lower 4nd thus of

less resolution capability. However, the two peaks have located the sources
correctly and, in addition, the peak values reflect the true power levels of
the sources. This is in agreement with the observations of Lacoss [5] and
others. Although this technique has less resolution than the previous one
and requires more computation in plotting the output spectrum, it does
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offer several rather significant advantages:

a. The output power is directly referenced to receiver noise power,
thus permitting calibration and measurement of relative source strength.

b. If the sources can be resolved, then a psuedo-linear-superposition
holds at the peaks, and they should reflect the true relative source
strengths.

c. The output of this filter is a real signal, and if the filter pass-

band is steered to a particular source, one can monitor that source at full

array gain while rejecting all other sources.

d. The residual background spacial ripple (the equivalent of pattern
"sidelobes") is very low and well behaved.

e. It is not neceosary to have the elements equally spaced. Thus, one
should take advantage of this property to spread them out for a wider aper-
ture and substantially increase the resolution for a given number of elements.
This is done in the field of Geophysics F4]. By so doing, it is very likely
that this method could equal the resolution of the previous technique.
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APERXTURE SAMPLING PROCESSING FOR
GROUND REFLECTION ELEVATION MULTIPAT1IIA 1ACTERIZATION *

JAMES E. EVANS and DAVID Y. SUN

M.I.T. Lincoln Laboratory
Lexington, Masu. 02173 4

Abstract

The angular resolutioll and tracking of closely apacud targets iu a clas-
sical radar problem which is receiving increased attention, and terrain multi-
path (e.g., reflections) has long been recognized to be a principal limiatioun
on the achievable accuracy oi' radar elevation trackers at low elevation an- 1
gleu. This paper discusses the use of aperture aampling proceusing to improve
the angular resolution/tracking and to characterize the mnultLipath environment.

The received uignal is measured along the antenna aperture and the modern"1high resolution" sp~ectral uutiukatiun Lochniquat4 (u.g., maxim~um, likelihood and

maximum untropy method) are applied to the pLatial. sample data. EXperimental
results of applying these tuclu.liques to field data from an L*-band elevation
array are prreuunted. It is shown that maximum entropy prucesuing offers im-
proved performance ill resolving mul.tipath features and low angle tracking.

I. Introduction
This pap~er preaeullL thle rsuUlts of all Uxper:imuilal. ~rugr i uo obtain .

better quantitative understanding uf low angle iicrowave propagation ihuntulcin
and to assess thle pULell~iUIlufr im|proved uluvatLin Lrucking, purforilulnce by Up)-
erture sampling processing. It has loung been recoguized that terrain multi-
path (e.g., reflections and/or shadowing) are a principal limitation on the
achievable accuracy of radar elevlaion trackers at low augleu [1,2], V'igure
1-1a illustrates the propagation phenomena of interest. Since elevation
tracker antennas generally have quite directional patternls in the ulevation
plane, a critical factor in refining and predicting the p~erformance of all ele-
vation tracker is the distribution of the' received signal power ZLu a function
of elevation angle (i.e., tile so-called angular power spectrum) [i]. Figure
1-lb illustrates the angular power spectrum that might arise with the multi-
path environment shown In Figure I-la. With our approach, we treat the prob-
lem of iultipath environment characterization and target elevation angle es-
timation as one of estimating the angular power spectrum of the received sig-
nal.

This work was sponsored by the Federal Aviation AdministratLioun. "The
views and conclusions contained in this document are those ot thie contractor
and should not be interpreted as necesoprily representing the official poli-
cies, either expressed or implicit, of the United States Government".
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The approach takun here ia b&.ud on thu adaptive proceuoiug of the rc-
ecived apu)Lrture informationi. Our gouln4 are' (1) to obtain higher rutuolution

aligular power apectruil thanl would bu obt~ainahlu with the "convuutiukial" beamI
sum apectrum for butter characterization of thu nIultipath unvirunwluntf. anld (2)
to achieve buttur ustimatiun of the tar~gut elevation aniju than would be
uchiuvable with the "utania~rd" tracking, muthodu (ug., monopuluu) by utilizilig
thiui knowledge of thL multipatLh charturvitie. Thlu t4taI rting point iii our
apjpruacll is mulauring Lhu (cumplux) rucuivud wavuf'oril (i.u. W thu amplitude aud
phlaue) at varioum pointalon the rouciving a1ntumia aperture, Next, we apply
Louvural high rLuaolution 141)Oural analyniu tuclIniqtUor; to the upatial aulmpic
datiu. Heure, upucifically, wQ Coumidur the Uuuu of the maximum likelihood (ML)
and th1cu iaximum uutropy (Mti) upuctral. ou3ntiiwLion muthudil which havu boon uip-
pliud iin Limu auriuu analyiul anid uuhmle/iifu/ntiair uny proeeutiing [3-6] for ru-
UolViIL6g 010. CloNUly HpcO~d Hpw tra 1. T11 ncl

Although Lhure ½w a ailmplu duality butwuon upaou and Lime (nuo lig. 1-2)
which 1)urlkitu Onu to apply J.1ile noriuu anaiyulu tochniquou, tu~vural fuuturuu
ol Our problum difiur IIgilnificantty from thu mutuai time. nurics application:

(:1) the data nampius avo complux ( thuuj aLluvi~itiung Ulu "'peak

(2) thu number of' dUata uapluil itn gumivally timull (g.,5-50)

anld

(3) inl miany cuuuu thu, aiigual rucuived fromi dII.T'uiLun diructiona
arc highly currulatud iii Lime, nuch that thIU uampIIlu Bpatial
covaL':tanou iu quitu noimtat luiviy . The cuntioqpuenco of thiu iu
that; thu r~utultu for: cortain phnaui rulatiounhipl Canl diftur
uubutautially vow tho xruouuit for thu uuuumbic covarilanuc.

At Various poiints ini thu uubauquunt dlm.usu.Lou, wu will i11i~it;vut~u thu impac~t.;
ol th1cuo variouu iuatuc'uu on thu overall puriormitnc.

Thu 7cmuaindur of thu paper iu organizod au fullowu. Sectiuii IT. briefly
duuoc ibuu tho high runolution algor itlnu umployud in our work and uhowu some
exaimpou uf olupplyin~g, thum to nyunthutic datal. TIi u m al1g orithiv~u aru tLhun uuud
in analyzing; filud data from anl h-band turratin roflec Lion mefnuurLntunt program.
Thouu uxpuriimjunal ruuults arc prount.-lud In Juctýiuu 111, 1?ollow;:d by theu num-
nmary of t~he rcuu.ILt in thu. laut SUCtionl.

11. HIGH JtL REOLU~iN S PFXYIRUM ESTIMATION I'R0CVI)URtIS

There hati been much diocut.~nion of the niuiximum likelillood (ML) and thu
imaximium entropy (MEs) toc.1miqueu rucunt2.y in thu guophyuico and time scrica
Una3.y~iS liturature. Thun, we will only prutnunt; the kuy iduua together with
jmprt tncia. refcormiucn; * Tho presnuntat i~on of' t~he varioumi tchclniqu(Is call be
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facilitated by Use of VuCLOIV nlotatioa. T'I&P,. notational convention we will useQ
it., that Col~luiji V4CLorN OV MLricua are reprousnted by underlined lowe-case
lu~tter. The asterisk duLuotes cuajugate transpouitionl. Underlined uppercase
letters represeant: llormil'Liiiua ricces Tliu6 vuctor s represent~s thle coulpILex

1401Ur OUtI)putl Of LhlL tIne array while the covarian-eu matrix R has as its i,
:i h entry

~1e ML oatimatloii had its geneioui in uuiamic array boainforming under eon-
ditiona of directional iin?:urforunuj [3) aild adaptive array nulling of I,nco*-
110 01ULt iLLu ering liourueu 1'71. Thiu prublem is u irpiulatud au determining thle

miinimumi varianceu unbiased uuLiliateu of thu powur from a given angle subject toI
the intorfurvunc (complex) covuviullce matrix. If tile interference Were
Gaussian with aleuiww euvuriance mutrix Q (egVia measurument~s in thle ab-
suncL' ot tho dcuirud jinaul) , the maximum likelilhood estimate of the power ill
a planeu wave IromU angle 0 would bea givenl by

* -1. -1 (ý* -l 2

where v d exp. Qj211 x1 sinl U) iu t~ku received signal vuetor corresponding to a
Unit p1)n waveC W4rV m anglek 11 0 and £ý. - U U* iq the sample covariance uuiLriz.

Uniot.Luna~tuy, wheni the interfering a ignala are imulLipaLth and/or coherent
JUamme1ru, R cannot Lu wc.auurud independently of' the desired uignal. CThpun [31
suggeutu using thew saumpl euva'iunce matUriX ii as an es~timAte of ~, Go that thue

angle puowr spuetrum autiiwtua is then given by

1)IL(0) - M% 2~ L(2)
Thie CuiýLiLUxat (2) may be contr~asted to tile U~adard "beam sum" (BS) angle power
upwL):rl 0II etiiate oi

*AI

e u~ (3)

This paUrciCUlur cutimllut gives rise to a sin KU/KQ beam pattern which has a
high uidulobu level (-13 dlI). By weighting thle data samples, lower sidelobou
are obtained atL thle "COst" of, wider beamwidths (i.e., poorer resolution) [8).

ha ee jusifed by aiu valriety mtof foumnt hi-6h rslthon sphyecally mostimatin-
Th ee justifaimum byavrentroy mhod orghi h r4-6oluTion phspicallumoestimeatin-

igll&Jul argumientL for radar applications is thht the received angular Spectruml
canl be represent~ed by a f inite number of polos in the complex plane, i.e. ,
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N J2i1si .
N -2

p(0) - 1 (1211(sin 0-zi) (4)
i-i i

where z lies on or within the unit circle and the spatial samples are token
at poinls Xk - k6, The case of z on the unit circle could correspond to dis-
crete plane waves while z inside the unit circle might correspond to an ex-
tended target (e.g., diffuise reflections). Time samples with the spectrum of
(4) may be generated by passing a white noise process through an all pole fil-
Ler of order N, which is a standard model in autoregression time series analy-
sis. For the bulk of the data dscribed here, only a short nonstationary set
of spatial samples were available. Therefore, the Burg algorithm (modified
for complex data values) Wuis been used to determine the values of [9].

Much of the interest in the ME and ML algorithms has been generated by
experiments in applying these methods to synthetic data. Fig. 2-1 and 2-2
show examples of applying the various algoritluhs to synthetic data consisting
of 1 and 2 plane waves, respectively, with independent noise added to each
sensor sample.* The actual angular power spectrum in each case consists of I
impulLe functionus at the plane wave angles. In the case of a single plane
wave, all three estimates give the same peak location; however, the high reso-
lution techniques more closely approximate the actual spectrum shape.

Thu example with two plane wave components iu a case where the components
are too cluse (0.84 standard beamwidths) to resolve by classical means. In

P this particular case, only the ME method glvus an estimate close to the actual
spectrum. The failure of the ML technique in this case is noteworthy also in
view of its success in resolving plane wave signals when given the ensemble
covariance as illustrated in leig. 2-3. Although the ME technique was success-
ful in the case shown in Fig, 2-2 at smaller separation angles (e.g., 0.25
standard beaumwidths) and unfavorable phase relationships (e.g., 0* at the ar-
ray center), it too is unsuccessful even at high signal to noise ratio.

This significant discrepancy between resolution performance for tha on- i
semble and certain sample functions provides impetus for studies of alterna-
tive estimators. In this context, mention should be made of theoretical
bounds on the performance of optimal two plane wave (sineusoid) parameter es--
timators which suggest that significant improvements in resolution periormance
at 0' or 180' phases uumy require very high signal to noise ratios [10, 11]. o

A radar tracker call be viewed as attempting to determine the centroid of
the angular power spectrum peak corresponding to the direct signal. For an
elevation tracker, the direct signal generally corresponds to the peak with

*In these and the following figures of this type, each type of angular
spectrum estimate has been individually normalized to yield 0 dB peak value.
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the most positive elevation angle, Our initial effort has considered such a
peak finding criteria for ME spectra. Conventional radar trackers typically
approximate the beam sum centroid by determining the null of the ratio c (0) -

[A(o)/Z(o)] where the difference pattern A(O) : dE(O)/dO. When only a direct
signal is present at angle 0 and 0 is within 1 beamwidth of 0 d,

d d
c(0) z (N6) (0-d) (5)

so that one can estimate 0 without pointing the array at 0d' This gives rise
to an "off boresight" elevation tracker whereby 0 is constrained to be
> 0.7/N6 and (5) is used to estimate 0d if the last estimate of 0 d is less
than 0.7/N6. This keeps the main lobes of Z(0) and A(O) pointed above the
terrain and thus significantly reduces the errors due to multipath signals at
elevation angles below 0d~l].

III. _Experimental Results

As mentioned earlier, the terrain multipath is a principal limitation on
the achievable accuracy of radar elevation trackers at low elevation angles.

Low angle tracker development and performance prediction has been inhibited by
the lack of experimental data on the angular distribution of the scattered
power [1,2]. The objective of the work reported here was to utilize the aper-
ture sampling and high resolution spectral estimation methods discussed ear-
lier to analyze the field measurement data of the L-band ground reflection
signals for better characterization of the ground reflection elevation multi-
path and for improved estimation of the target elevation angle.

Figure 3-1 shows the aperture sampling equipment utilized in the field
measurements. The sampled aperture consisted of a 5 element 6.5X line array
(for evaluation of a small aperture tracker performauce) as well as a 9 ele-
ment 26X line array (for fine grain resolution of various multipath compo-
nents). Sensors in both array configurations were uniformly spaced. The
beamwidths of these two arrays were approximately 70 and 1.75', respectively.
The received signal consisted of 1090 M•z replies from a standard air traffic
control radar beacon (ATCRB) on board an aircraft in response to the ground
interrogations. The amplitude and phase* of the received signal at each of 11
L-band dipoles (used as sensor) was digitized and recorded on magnetic disks.
Alsb recorded were the digitized elevation angle of the target aircraft ob-
taintd from a tracking theodolite and various relevant environmental data.

The received signal consists of a plane wave at positive elevation angle
(corresponding to the direct signal coming from the aircraft ATCRB) and other
plane waves generally at negative elevation angles (corresponding to various

The RF phase was measured relative to a reference dipole while the am-
plitude was measured on calibrated log video receivers.
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ground reflections from terrain features). Thus, as shown in Figure 1-1, we

expect that the angular power spectrum of the received signal (i.e., the re-
ceived signal power as a function of elevation angle) will consist of a nar-
row peak at the direct signal elevation angle, narrow peaks at the arrival
angles of the major specular ground reflections and wider peaks in regions of
diffuse scattering [1].

In the results presented below, the maximum entropy (ME) angular power
spectrum was calculated using the Burg technique [9,141, and the filter length
of the corresponding prediction error filter was determined using Akaike's
final prediction error criterion [151.

Figure 3-2 shows the experimental angular power spectral estimates for a
special measurement at MIT Lincoln Laboratory antenna test range where the
elevation array was laid sideways horizontally on the ground so as to have
only a single plane wave incident on the array. The results are seen to cor-
respond closely to the synthetic data result of Figure 2-1, and are viewed as
providing a degree of validation for our data recording and analysis procedure.

Ground reflection field measurements were made for various terrain condi-
tions. Results for both near-flat terrain and rolling terrain are given be-
low. For comparison purposes, both the experimental angular power spectral
estimates from the field measured data and the corresponding simulated spec-
tral estimates (using the multipath computer simulation program developed for
the MicrowavL Landing System multipath simulations [133) are shown in the
same figure.

Figure 3-3 shows the angular power spectral estimates for a flight test
in which the target helicopter was at an angle of 1.40 and at a range of 0.4
nmi. Figure 3-4 shows the terrain height proiile and the corresponding ground
model used to generate the simulated spectral estimates. The terrain in front
of the receiving antenna array consisted of a fairly flat grass field adjacent
to the main ruaway at 'lanscom aizport, Mass. Thus, it is expected that the
ground reflected signal would be primarily a specular reflection from the
fairly flat ground which bad bean attenuated hy the grass cover. In both.
measured and simulated results, it can be seen that all three angular power
spectral estimates suggest the presence of two sig.als (ore direct signal and
one ground reflected signal); howlver, the ME spectral estimate appears to
offer higher resolution ot the signals vs well as lower background spectral
level. It has been shown that the aiea under an ME spectral peak provides a
good estimate of the component power [4]. Based on this estimate of the com-
ponent power, the estimated specular reflected signal power relative to the
direct signal in Figure 3-3a is -3 dB which compares reasonably well with -3.5
dB for the corresponding simulated result in Figure 3-3b. Also, the estimated
arrival gzýgles of the ground reflected signals agrees fairly well between the
field measurement and the corresponding simulation z'esults.
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Figure 3-5 shows the spectral estimates for a flight test in which the

target helicopter was at 4.20 and 0.6 nmi. This field test was taken at the
golf course of Fort Devens, Mass. Figure 3-6 shows the terrain height pro-
file and the corresponding ground model used to produce the simulated spectral
estimates. Here, the terrain in front of the receiving antenna array has var-
ious downward and upward slopes within a roughly level horizon and the ground
was covered very much uniformly by short grass. This type of rolling terrain
can often give rise to the "focusing" terrain reflections, i.e., more than one
specular reflection presenting at a given time. We see in Figure 3-5 that
both the field measured result and the simulation result indicates the exis-
tence of two ground reflected signals, one at -6.0' and the other at -1.7°
with the latter having lower multipath level. Again, the ME spectral estimate
appears to yield better resolution of various arriving signals and to give
lower background spectral level.

Figure 3-7 shows experimental results for target elevation angle estima-
tion of a flight test at golf course of Fort Devens, Mass. The flight path of
the target helicopter was vertical descent at a range of 0.§ nmi covering ele-
vation angles from 7.5° to 1.50. We see that the elevation angle estimator
based on the ME spectral estimates generally yields smaller angular errors
than the conventional monopulse, especially in the low elevation angle region.

IV. Summary

Our preliminary results from the analysis of the low angle terrain scat-
tering field measurements by utilizing the high resolution spectral estimation
techniques suggest that these modern spectral estimation methods, especially
the ME method, can be effectively used for ground reflection elevation multi-
path characterization and for improved target elevation angle estimation.
However, several problems associated with applying these promising techniques
to such array data need additional stndy. These include (1) choice of the
"correct" prediction error filter length in the ME method, (2) the proper es-
timation of the covariance matrix to be used in the Mn met'liod, and (3) alter-

native estziators which are less sensitive to the relative phase between the
various received signals.
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MULTIPLE EMITTER LOCATION AND SIGNAL PARAMETER ESTIMATION

RALPH SCHMIDT

ESL, Incorporated
495 Java Drive

Sunnyvale, CA 94086

Processing the signals received on an array of sensors for
the location of the emitter is of great enough inte-rust to havc
been treated under many special case assumptions.

The general problem considers sensors with arbitrary loca-
tions and arbitrary directional characteristics (gain/phasu/
polarization) in a noi&:e/intorferance environment of arbitrary
covariance matrix.

This report is3 concerned first with the multiple emitter
aspect of this problem and second with the generality of solu-
tion. A description is given of the Multiple Signal Classifica-

tion (MUSIC) algorithm, which provides asymptotically unbiased

1. number of incident wavefronts present

2. directions-of-arrival (or emitter lctos

3. strengths and cross-correlations among the incident
wave forms

4. noise/interference strength.

Examlesand comparisons with methods based on Maximum Likeli-
hoodandMaximum Entropy, as well as conventional beam forming
aeincluded. An example of its use as a multiple frequency

estiatoroperating on time series is included.

II
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Introduction

The term multiple signal classification (MUSIC) is used to
describe experimental and theoretical techniques involved in
determining the parameters of multiple wavefronts arriving at an
antenna array from measurements made on the signals received at
the array elements.

The general problem considers antennas with arbitrary loca-I
tions and arbitrary directional characteristics (gain/phase/
polarization) in a noise/interference environment of arbitrary
covariance matrix. The Multiple Signal Classification (MUSIC)
approach is described; it can be implemented as an algorithm to
provide asymptotically unbiased estimates of

1. Number of signals
2. Directions-of-arrival

3. Strengths and cross-correlations among the directional
wave forms

4. Polarizations
5. Strength of noise/interference.

These techniques are very general and of wide application.
Special cases of MUSIC are

1. Conventional Interferometry
2. MonopulLe Du, i.e., using multiple colocated antennas

3. Multiple Vrequency Estimation.

The Data Model

The waveforms received at the M array elements are linear
combinations of the D incident wavefronts and noise. Thus, the
multiple signal classification (MUSIC) approach begins with the
following model for characterizing the received M vector X as in

"~ = [a(O) ia(O2) .. a(0D) 2 D 2 ~MUx
f AM
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X = AF + W (1)

The incident signals are represented in amplitude and phase
at some arbitrary reference point (for instance the origin of
the coordinate system) by the complex quantities F1 , F2 , ... , FD.

The noise, whether "sensed" along with the signals or generated
internal to the instrumentation, appear as the complex vector W.

The elements of X and A are also complex in general. The
aij are known functions of the signal arrival angles and the

array element locations. That is, aij depends on the ith array
element, its position relative to the origin of the coordinate
system, and its response to a signal incident from the direc-

tion of the jth signal. The jth column of A is a "mode" vector

a(0.) of responses to the direction-of-arrival 0j of the jth

signal. Knowing the mode vector a(0I) is tantamount to know-

ing 01 (unless a(0I) = a(0 2 ) with 01 0 ,2, an unresolvable

situation, a type I ambiguity).

In geometrical language, the measured X vector can be
visualized as a vector in M dimensional space. The directional
mode vectors a (0,) = aij for i = 1, 2, ... , M, i.e., the columns

of A, can also be so visualized. Equation (1) states that X is
a particular linear combination of the mode vectors; the ele-
mentsof 1 are the coefficients of the combination. Note that
the X vector is confined to the range space of A. That is, ifA has 2 columns, the range space is no more than a 2-dimensional

subspace within the M space and X necessarily lies in the sub-
space. Also note that a(0), the continuum of all possible mode
vectors lies within the M space but is quite nonlinear. For
help in visualizing this, see Figure 1. For example, in an
azimuth-only DF system, 0 will consist of a single parameter. In
an azimuth/elevation/range system, 0 will be replaced by 0,q,r
for example. In any case, a(0) is a vector continuum such as a
"snake" (azimuth only) or a "sheet" (AZ/EL) twisting and winding
through the M space. (In practice, the procedure by which the
a(0) continuum is measured or otherwise established corresponds
to calibrating the array.)

In these geometrical terms (see Figure 1), the problem of
solving for the directions-of-arrival of multiple incident wave-

fronts consists of locating the intersections of the a(6)

I
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continuum with the range space of A. The range space of A is, of
course, obtained from the measured data. The means of obtaining
the range space and, necessarily, its dimensionality (the numberD of incident signals) follows.

The S Matrix

The MxM covarianc-ý matrix of the X vector is

S A = A=F--A*

or

S APA* + AS0  (2)

under the basic assumption that the incident signals and the

noise are uncorrelated. Note that the incident waveforms
represented by the elements of F may be uncorrelated (the DxD
matrix P A FF* is diagonal) or may contain completely corre-
lated pairs (P is singular). In general, P will be "merely"
positive definite which reflects the arbitrary degrees of pair-
wise correlations occurring between the incident waveforms.

When the number of incident wavefronts D is less than the
number of array elements M, then APA* is singular; it has a
rank less than M. Therefore

IAPA*I I s- XS = 0 (3)

This equation is only satisfied with X equal to one of the
eigenvalues of S in the metric of S . But, for A full rank and
P positive definite, APA* must be n8 nnegative definite. There-fore X can only be the minimum eigenvalue X i n* T e e o e n

measured S = XP matrix can be written

S = APA* + Xmin So 0 Xmin > 0 (4)

where minzis the smallest solution to IS - ASo0  = 0. Note the

special case wherein the elements of the noise vector W aremen rvrac 2. 2I
mean zero, variance u 2; in which case, minSo = .

Calculating a Solution

The rank of APA* is D and can be determined directly from
the eigenvalues of S in the metric of S . That is, in the
complete set of eigenvalues of S in theImetric of SI, A will
not always be simple. In fact, it occurs repeated N =M-D times.
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This is true because the eigenvalues of S and those of
S - i = APA* differ by X 1i in all cases. Since the mini-

mum eigenvalue of APA* is zero (being singular), X must occur

repeated N times. Therefore, the number of incident signals
estimator is

A A

D = M - N (5)

where N = the multiplicity of min (S,S ) and min(SS ) is read
"Ixi of S in the metric of So." (In practice, one can expect
min 0

that the multiple Xmin s will occur in a cluster rather than all
precisely equal. The "spread" on this cluster decreases as more
data is processed.)

The Signal and Noise Subspaces

The M eigenvectors of S in the metric of S must satisfy 1
Sei = iS oei, i = 1, 2, ... , M. Since S = APA* + XminSo, we
have APA*ei = (Xi - min )So ei. Clearly, for each of the Xii
that is equal to Xmin - there are N - we must have APA*ei =0

or A*ei = 0. That is, the eigenvectors associated with

X - (S,S ) are orthogonal to the space spanned by the columns

of A; the incident signal mode vectors!

Thus we may justifiably refer to the N dimensional subspace
spanned by the N noise eigenvectors as the noise subspace and
the D dimensional subspace spanned by the incident signal mode
vectors as the signal subspace; they are disjoint.

The Algorithm

We now have the means to solve for the incident signal mode
vectors. If EN is defined to be the MxN matrix whose columns

K. are the N noise eigenvectors, and the ordinary Euclidean dis-
tance (squared) from a vector Y to the signal subspace is

2 2d2  Y*ENE*Y, we can plot 1/d for points along the a(O) con-
tinuum as a function of 0. That is,

= 0 (6)PMU(O) a,(O)ENENa(O)
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(However, the a(0) continuum may intersect the D dimensional
signal subspace more than D times; another unresolvable situation
occurring only for the case of multiple incident signals - a
type II ambiguity.) It is clear from the expression that MUSIC
is asymptotically unbiased even for multiple incident wavefronts
because S is asymptotically perfectly measured so that E is
also. a(0) does not depend on the data.

Once the directions-of-arrival of the D incident signals
have been found, the A matrix becomes available and may be used

to compute the parameters of the incident signals. The solution
for the P matrix is direct and can be expressed in terms of
(S - XminSo) and A. That is, since APA* = S - XminSo,

P= (A*A)-IA*(S - XminSo)A(A*A)- (7)

Including Polarization

Consider a signal arriving from a specific direction 0
0Assume that the array is not diverse in polarization; i.e., all

elements are identically polarized, say, vertically. Certainly
the DF system will be most sensitive to vertically polarized
energy, completely insensitive to horizontal and partially sen-
sitive to arbitrarily polarized energy. The array is only sensi-
tive to the vertically polarized component of the arriving
energy.

For a general or polarizationally diverse array, the mode
vector corresponding to the direction 0° depends on the signal
polarization. A vertically polarized signal will induce one

mode vector and horizontal another, and right hand circular (RHC)
still another.

Recall that signal polarization can be completely charac-
V terized by a single complex number q. We can "observe" how the

mode vector changes as the polarization parameter q for the
emitter changes at the specific direction 0 It can be proven
that as q changes through all possible polarizations, the mode
vector sweeps out a two-dimensional "polarization subspace."
Thus, only two independent mode vectors spanning the polariza-
tion subspace for the direction 0 are needed to represent any
emitter polarization q at directi 8 n 0 . The practical embodiment
of this is that only the mode vectors of two emitter polariza-
tions need be calculated or kept in store for direction 00 in
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order to solve for emitter polarizations where only one was
needed to solve for DOA in a system with an array that was not
polarizationally diverse.

These arguments lead to an equation similar to Equation (6)
for P(O) but including the effects of polarization diversity
among the array elements.

IPa*(O) (8)

Xmin [a-*N([a y

where ax (0) and ay (0) are the two continua corresponding to, for

example, separately taken x and y linear incident wavefront
polarizations. The eigenvector corresponding to Xmin in Equa-

tion (8) provides the polarization parameter q since it is of

the form [1 q]T.

The Algorithm

In summary, the steps of the algorithm are

Step 0: Collect data, form S
Step 1: Calculate Eigenstructure of S in metric of S0

Step 2: Decide number of signals D; Equation (5)

Step 3: Evaluate PMU(0) vs. 0; Equation (6) or (8)

Step 4: Pick D peaks of PU(@)

Step 5: Calculate remaining parameters; Equation (7).

The above steps have been implemented in several forms to verify
and evaluate the principles and basic performance. Field tests
have been conducted using actual receivers, arrays, and multiple
transmitters. The results of these tests have demonstrated the
potential of this approach for handling multiple signals in
practical situations. Performance results are being prepared
for presentation in another paper.

Comparison With Other Methods

In comparing MUSIC with ordinary beamforming (BF) Maximum
Likelihood (ML) and Maximum Entropy (ME), the following expres-
sions were used. See Figures 3 and 4.
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P BF ()= a* (e) S a(0)

P ML (0)=1

a* (0)S a (e)

ME(0) = a*(O)cc*a(O)

where c is a column of S 1. The beamformer expression calcu-
lates for plotting the power one would measure at the output of
a beamformer (summing the array element signals after inserting
delays appropriate to steer or look in a specific direction) as

a function of the direction.

PML(0) calculates the log likelihood function under the
assumptions that X is a mean zero, multivariate Gaussian and
that there is only a single incident wavefront present. For
multiple incident wavefronts, PML( 0 ) becomes

PML (a)= 1
xmin (AS-IA)

which implies a D dimensional search (and plot!)

PME(0) is based on selecting 1 of the M array elements as

a "reference" and attempting to find weights to be applied to
the remaining M-1 received signals to permit their sum with a
MMSE fit to the reference. Since there are M possible refer-
ences, there are M generally different P (W)'s obtained from

ME
the M possible column selections from S . In the comparison
plots, a particular reference was consistently selected.

An example of the comupletely general MUSIC algorithm
applied to a problem of steering a multiple feed parabolic dish

sin x
antenna is shown in Figure 5. -Six pencil beamshapes skewed

slightly off boresight are assumed for the element patterns.
Since the six antennas are essentially colocated, the DF
capacity arises out of the antenna beam pattern diversity.
The computer was used to siraulate the "noisy" S matrix that would
arise in practice for the conditions desired and then to subject
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it tc the MUSIC algorithm. Figure 5 shows how three direc-
tional signals are distinguished and their polarizations esti-

k| mated even though two of the arriving signals are highly similar
v (90% correlated).

The application of MUSIC to the estimation of the fre-
quencies of multiple sinusoids (arbitrary amplitudes and phases) j
for a very limited duration data sample is shown in Figure 6.
The figure suggests that, even though there was no actual noise
included, the rounding of the data samples to six decimal
digits has already destroyed a significant portion of the
information present in the data needed to resolve the several
frequencies.

Summary and Conclusions

As this paper was being prepared, the works of Gething[l]
and Davies[21 were discovered, offering a part of the solution
disci,.ssed here but in terms of simultaneous equations and
special linear relationships without recourse to eigenstructure.
However, the geometric significance of a vector space setting
and the interpretation of the S matrix eigenstructure was
missed. More recent work by Reddi[3] is also along the lines
of the work presented here though limited to uniform, collinear
arrays of omnidirectional elements and also without clear utili-
zation of the entire noise subspace. Ziegenbein[4] applied the
same basic concept to time series spectral aiialysis reierring
to it as a Karhunen-Loeve Transform though treating aspects of

it as "ad hoc". El-Behery and MacPhie[51 and Capon[6] treat
the uniform collinear array of omnidirectional elements using
the Maximum Likelihood method. Pisarenko[7] also treats time
series and addresses only the case of a full complement of
sinusoids; i.e., a 1 dimensional noise subspace.

The approach presented here for Multiple Signal Classifica-
tion (MUSIC) is very general and of wide application. The
method is interpretable in terms of the geometry of complex
M spaces wherein the eigenstructure of the measured S matrix
plays the central role. MUSIC provides asymptotically unbiased
estimates of a general set of signal parameters approching the
Cramer-Rao accuracy bound. MUSIC models the data as the sum of
point source emissions and noise rather than the convolution of
an all pole transfer function driven by a white noise (i.e.,

autoregressive modeling, Maximum Entropy) or maximizing a
probability under the assumption that the X vector is zero mean,
Gaussian (Maximum Likelihood for Gaussian data). In geometric
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terms MUSIC minimizes the distance from the a(0) continuum to
the signal subspace whereas Maximum Likelihood minimizes a
weighted combination all component distances.

No assumptions have been made about array geometry. The
array elements may be arranged in a regular or irregular pattern
and may differ or be identical in directional characteristics
(amplitude/phase) provided their polarization characteristics are
all identical. The extension to include general polarization-
ally diverse antenna arrays will be more completely described in
a separate paper.
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FIGURE 6. Example of MUSIC Used for Frequency Estimation
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THE MAXIMUM ENTROPý SPECTRAL ESTIMATOR

USED AS A RADAR DOPPLER PROCESSORt

SIMON HAYKIN and HING C. CHAN

Communications Research Laboratory
Faculty of Engineering
McMaster University

Hamilton, Ontaric, Canada

Abs tract

The paper describes the use of the maximum entropy method to estimate the
Doppler shift of a moving target in the presence of additive white noise or
colored noise consisting of clutter plus white noise. Computer simulation
results are included, which show that in a background of additive white noise
a Doppler processor based on the maximum entropy method is only slightly sub-
optimal with respect to a conventional Doppler processor based on the discrete
Fourier transform, whereas in the presence of additive clutter with a narrow

spectral width (e.g., ground clutter) it is markedly superior in performance
to the conventional processor for the case of low Doppler targets.

tThis research was supported by the Department of Communications, Ottawa,

1. Introduction

In this paper we describe a novel application of the maximum entropy
spectral estimator (MESE) as a radar Doppler processor in which the Doppler
frequency shift produced by a moving target (e.g., an aircraft) as it moves
radially with respect to the radar antenna, is used to detect the presence of
the target in a background of stationary clutter and/or receiver noise. Two
features make the MESE well-suited for this application: (1) its high frequency
resolution capability, and (2) the fact that it can operate with a relatively
small number of data samples, which is often the case in a pulsed radar envir-
onment.

In Section 2 we briefly review the relevant features of the MESE, and in
Section 3 describe the use of this device for Doppler processing. In Section
4 we compare the performance of this processor with that of a Doppler pro-
cessor which uses the combination of a double-delay line canceler and discrete
Fourier transformer. The comparison is made for two different forms of inter-

V ference at the receiver input: (1) the interference consists of pure white
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Gaussian noise, and (2) the interference consists of white noise plus a
clutter component.

2. The Maximum-Entropy Spectral Estimator (MESE)

Consider a complex-valued weakly stationary time series {xn}, where
n = 1,2,...,N. The algorithm used to design a maximum-entropy spectral
estimator (MESE) for such a time series involves two forms of prediction,
namely, forward prediction and backward prediction, with the resulting pre-
diction-errors denoted by em,n and eb,n respectively, where m = 0,1,2,...,M
refers to the pertinent stage of computation. These two prediction errors
imay be computed using the equivalent lattice model of Fig. 1, where the num-
ber of stages in the lattice model is denoted by M. The set of numbers {Pm),
m = 1,2,...,M, are called the reflection coefficients of the estimator. The
input time series {Xn] and the prediction-error time series {ef,n} are
orthogonal. Furthermore, 1-he successive stages of the equivalent lattice
model are decoupled from each other, that is, the backward prediction-errors
in the modal are orthogonal to each other. Accordingly. we may state the
following:
(1) The reflection coefficient pm at stage m of the model may be computed

independently of the reflection coefficients of those following stage m.
In fact, the global minimization of the prediction-error power with

respect to pm may be achieved as a sequence of local minimization

problems, one at each stage. Specifically, we have

N
(m-l) b(m-l)-2 n f,n eb,n_

nm~m+ 1
P N m = 1,2,...,M (1)

(m-l~ 12 + (m-l) 2
X [ýefm I + lae I

(0) (0) n=m+ I ,n b

where ef,n eb,n Xn (in)(2)

(2) To compute the forward prediction error e, at stage m, it is sufficient
to update the forward prediction error efm-Y) with a constant (namely,
the reflection coefficient Pm) times the Alayed backward prediction-
i error eb(mII-1,, with both e(m-T) and e•(n-la referring to the preceding-' - .-• b ,n-

stage m-l. The orthogona £ity of the data and error sequences ensures
that this new forward prediction-error eým) is smallest in the least-
squares sense and that previous coefficients need not be changed.
Similar arguments hold For the forvard prediction-error (m) at stage in.
We may thus write

e (in) (m-l) + P ( e(m-1) (3)

f,n f,n m b,n-3.
e =e • e (m-l)(i) (m-l) + ((,1)

eb,n e b,n- in e f,n
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where m 1,2,...,M.
(3) The minimum prediction-error power P at stage m is defined in terms of

the minimum prediction-error power Pm-i at stage m-i and the reflection
coefficient Pm at stage m as follows:

ro-1 (1- U 112), m = 1,2,..,M (5)

where
N

1 NP0 = N x nx n(6)
n=1

A filter having the time series {x I as input and the prediction-error
{e- ) as output is known as the prediciion-error filter. The order m of this
fitner defines the number of stages contained in the lattice model of Fig. 1.
The coefficients of the prediction-error filter, denoted by aM) , may be
computed by using the Levinson recursion:

(M) (n-1) (M-l) *
a m)a ma+nl) M aM-m , m =O,1, .... M (7)

where the asterisk denotes complex conjugation. Note that

(M) -{, for m = 0
a m 0, for m > M

Finally, having evaluated the pertinent set of filter coefficients, we may
compute the maximum entropy spectral estimate of the given time series by
using the formula

PS M = M (9)
x M

SM 1f22B]I + • a m) exp(-jm21rfTs)

m=l

where B is the bandwidth of the time series, and ITS is the sampling interval.
With Nyquist rate sampling, we have Ts = 1/2B. Equation (9) clearly empha-
sizes the nonlinear nature of the maximum entropy spectral estimatoz This
formula is the basis of the Doppler processor to be described next.

3. A Doppler Processor Using the MESE

A radar Doppler processor utilizes the effect of Doppler shift on the
echo reflected from a moving target in that the power spectrum of this echo
is centered about a frequency which is shifted from the transmitted carrier
frequency by an amount proportional to the radial velocity of the target. In
addition to this target echo, the received signal contains a clutter component
(produced by reflections from unwanted objects such as ground and weather
disturbances) and a receiver noise component. Figure 2 shows the block
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diagram of a Doppler processor using the maximum entropy spectral estimator,
which is designed to compute the spectral estimate Sx(f) of the sampled form
of the received signal at a pre-selected set of frequencies, uniformly spaced
across the Doppler band of interest. This frequency spacing is determined by
the resolution capability of the MESE. In the Doppler processor of Fig. 2,
the logarithm of the MESE output, rather than the output itself, is compared
with a threshold in order to determine whether a target is present or not.
The reason for this operation is explained below.

In order to properly set the detection threshold level at the Doppler
processor output, we need to know the statistical behavior of Sx(f). Owing
to the nonlinear dependence of Sx (f) on the receiver input, we find that it is
rather difficult to treat this problem analytically.

The results of an extensive computer simulation study [1] have shown that
with white Gaussian noise as input, the statistics of the logarithm of the
spectral estimate x (f), that is, the quantity defined by

xA
Zx (f) = 10 log1 0 S x M (10)

may be closely modeled as Gaussian. This is illustrated in Fig. 3 where we

have plotted the probability of false alarm P versus the threshold level V
FAA(f iSWe see that the curve calculated by assuming a Gaussian model for Zx(f) fits

the experimental curve (obtained by Monte-Carlo simulation) almost perfectly.
It is found that for a fixed value of data record length N, the mean value of

M(f) decreases with the order M of the prediction-errcr filter. On the other
hand, for a fixed value of M, the me;n value of Zx(f) increases with N. With
regard to the standard deviation of Zx(f) it increases as the filter order M
increases, whereas for a fixed value of M, it decreases as the record length
N increases.

With clutter as input, the results of computer simulation show that:
(a) If the spectrum around the frequency at which ý (f) is computed is

symmetrical, the use of a Gaussian model for kf) is justified.
(b) If the spectrum of the input around the frequency of interest is

unsymmetrical, the statistics of Zx(f) deviate markedly from a Gaussian
one. The degree of deviation from a Gaussian model increases with the
slope of the power spectrum of the clutter input at the frequency of
"interest. As this slope approaches zero, (corresponding to white noise
input), the use of a Gaussian model provides an increasingly better fit
for the statistics of ^ (f).

(c) Increasing the number of data samples N and the filter order M in a cor-
responding way tend to reduce the deviation from Gaussian statistics
for Zx(f)•

x

4. Performance of the Doppler Processor

For the MESE to be useful as a means of measuring the unknown Doppler
shift of a moving target, a threshold level must be set at the processor
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output so as to realize prescribed values for the probability of false alarm
PFA and probability of detection PD" In the case of thermal noise at the
receiver input as the only source of interference, we simply have to maintain
the mean and variance estimates for each Doppler cell of interest at prescri-
bed values, since the logarithm of the Doppler processor output, namely,
Zx(f) is Gaussian at all frequencies across the Doppler band. In the case of
a received signal containing a clutter component, however, the situation is
more complex, because the statistics of Zx(f) in the clutter-dominated region
tend to deviate from a Gaussian behavior and the degree of deviation is
dependent on the slope of the spectrum of the received signal at the frequency
of interest. It appears, therefore, that in this case some form of correction
in the threshold settings is required if a Gaussian model is assumed for the
statistics of Z (f). This is usually true for parametric detectors operating
with unknown input statistics.

In this section, the performance of a Doppler processor using the MESE
is investigated and the results compared with that of one of two different
configurations, depending on the input conditions:
(1) A Doppler processor using the discrete-Fourier transformer (DFT) for the

case of white Gaussian noise at the processor input; this processor is
equivalent to a matched filter fox non-fluctuating targets (2], [3].

(2) A Doppler processor using the combination of DFT and double-delay line
canceler [2), [3] for the case of clutter plus white noise at the input.

For this study', only small values of record length N are used, so that the

results are compatible with surveillance radar requirements. Specifically,
for the case of white Gaussian noise at the input, the performance of these
processors are evaluated for N = 8 and N = 16, whereas for the case of white
noise plus clutter, the evaluations are made for N = 10 and 18. The two
extra samples, in the latter case, are needed in order to initialize the
double-delay line canceler (i.e., for transient effects to die out).

4.1 Input Containing White Gaussian Noise

Figure 4 shows plots of the probability of detection PD versus the input
signal-to-noise ratio (SNR) for the case of a non-fluctuating target at the
normalized Doppler frequency f = 0.25 at a thceshold level set to real.ize a
probability of false alarm PFA = 10-6; the record length N = 16. Curve A
applies to the DFT processor, whereas curves B, C, D, and E apply to the MESE
processor with filter order M = 1,2,3, &nd 4 respectively. These results
indicate that for N = 16, a MESE processor using a prediction-error filter of
order M = 2 performs the best. Such a processor requires only 1.3 dB more I

SNR than the optimal 16-point DFT processor for PD = 0.9 and PPA - 10-6.

For the case where N = 8, it is found that a MESE processor with M = 1
provides the best performance, and for this value of M, it requires 1.7 dB
more SNR than the 8-point DFT processor for PD = 0.9 and PFA = 106"

We conclude therefore that a properly designed Doppler processor using
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the MESE performs only slightly sub-optimal.ly compared to one using the DFT
in the presence of additive white Gaussian noise at the input.

4.2 Input Containing Noise and Clutter

The evaluations in this case are made by using three sets of data labelled
as CD-I, CD-2, and CD-3 whose spectra are shown plotted in Fig. 5. The
conditions at the input are described by specifying two parameters, namely,
the signal-to-noise ratio (SNR) and clutter-to-noise (CNR). For each target
frequency of interest across the Doppler band the probability of detection P
is computed with the threshold level set to realize a probability of falseD

alarm PFA = 10-6. These computations are carried out for each of tl.e data
sets CD-I, CD-2, and CD-3. In the presence of clutter, it is found that the
order M of the prediction-error filter in the MESE processor has to be equal
to or greater than 2 so as to realize an acceptable target frequency select-
ivity.

For the input data set CD-I, Fig. 6 shows different plots of the required
SNR versus the normalized Doppler frequency of the input for N = 10,
PFA = 10-6, and PD = 0.9, assuming a non-fluctuating target.. Curve A refers
to a Doppler processor using the combination of a double-delay line capceler
and 8-point DFT. Curves B and C refer to a Doppler processor using the MESE
with M = 2 and 3, respectively. We see that in this case, the use of tha
MESE outperforms the double delay-line canceler-DFT combination by a fairly
large margin. For example, for the case when PD = 0.9 AND PFA o 10-6 ,
find that, in the Doppler frequency range 0.03 to 0.12, a MESE processor with

filter order w = 3 requires 3 to 10 db less SNR than the combination of a
double delay-line canceler and DFT. However, for the case of data sets CD-2
and CD-3, the improvement resulting from the use of MESE is not as larqe, as
may be seen by examining Figures 7 and 8 respectively.

Based on these results, we may make the following observations:
1) Compared to a Doppler processor using the combination of a double delay-

line canceler and DFT, a processor using the MESE provides a substantial
improvement in the detection of a slowly moving target in the presence
of clutter with a very narrow spectral width (e.g., ground clutter).
Therefore, by using the MESE, the frequency band of target visibility is
extended by a sizeable margin.

2) In the case of clutter with a narrow spectral width, the prediction-
error filter of the MESE processor should be as high as possible. In
particular, the filter order M should be chosen so as to minimize the
"effect of clutter on neighboring Doppler components.

5. Conclusions

A, It has been shown, by means of computer simulation, that in the case of
white noise as input, the statistics of the logarithm of the maximum entropy
spectral estimate may be closely modeled as Gaussian. However, in the
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presence of a clutter component, the statistics of the logarithm of this
estimate deviate from a Gaussian model, with the deviation becoming more
pronounced as the slope of the input clutter spectrum is increased.

A processor based on the maximum entropy estimator has been described
for the measurement of the Doppler shift of a moving target. It has been
shown that in the presence of additive white noise at the input, this
processor is only slightly sub-optimal compared to a Doppler processor based
on the discrete Fourier transform, which is optimum for the case of a non-
fluctuating target. In the presence of a clutter component with narrow spec-
tral width (e.g., ground clutter), however, we find that a Doppler processor
using the MESE is markedly superior to the combination of a double delay-line
canceler and discrete Fourier transformer, for low Doppler targets.

It should be emphasized that, although MESE-based processor has several
useful features for the processing of radar signals, it does not completely
eliminate the need for other conventional signal processing methods (e.g., the
discrete Fourier transfcrm). Rather, a MESE-based processor may be used as a
way of extending the performance capability of conventional radar processors.
Also, it should be emphasized that there is need for further investigations
(both theoretical and experimental) concerning the statistical behavior of
the MESE output and the full exploitation of the MESE for radar applications.
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APPLICATIONS FOR MESA AND THE PREDICTION ERROR FILTER

WILLIAM R. KING

King Research
10209 Westford Dr.

Vienna, Virginia 22180

Abstract

In recognition of the whitening and resolution character-
istics of MESA and the prediction error filter, it is demonstra-
ted that these techniques may have several signal processing
applications. Examples are provided to illustrate stable, high
resolution power spectra, high resolution autocorrelation func-
tions, and signal detection in strong interfering clutter.

Introduction

In 1967 Burg [1] utilized the prediction error filter and
the maximum entropy method for estimating power spectra in the I I
frequency domain. Since that time (12 years ago), the maximum
entropy method has had little application for purposes other
than estimation of power spectra in the frequency and wavenumber
domains. Maximum entropy spectral analysis (MESA), which is a
whitening filter, is recognized chiefly for its high resolution
capability when applied to short data sets. However, the white-
ning characteristic of MESA may prove to be effective for reduc-
ing clutter in signal detection applications.

In a power spectral analysis MESA is often used in lieu
of the F.,ourier transform. There are, of course, many applica- .

tions for the Fourier transform, both narrowband and broadband,
which may be considered as possible applications for MESA or the
prediction error filter. In a demonstration of the versatility
of MESA and the prediction error filter, these techniques are
used for estimating power spectra, the autocorrelation function,
and for detecting signals in typical radar interference clutter.
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The MESA Teýchnique

The MESA algorithm incorporates the Burg technique in all
applications demonstrated in this paper. The MESA-Burg equa-
tions for complex data are given in slide 1.

The MESA power spectra is expressed by eqn. (1) for the
space-wavenumber domain, where k is the wavenumber, N ii the
number of filter weights, Ax is the uniform antenna element
spacing and y is the nth filter weight. The total noise pow•er
P is given by eqn. (2), and the filter weights are evaluated
with use of the iterative eqn. (4). However, the last filter
weight is defined by eqn. (3). The terms cf eqn. (3) con'.ain
the forward and backward prediction errors denoted by a and ý that
are defined by eqng. (5) and (6) as functions of the data
samples.

Because MESA "snapshot" spectral patternrs are inherently . '.
unstable and sometimes contain split spectral peaks, all MESA
examples are computed by incorporating averaging techniques into
the MESA algorithm. King [2] employed several averaging meth-
ods, and concluded that two such methods, averaged covariance
matri.x elements arid averaged filter weigh cs, are both useful
methods for applying MESA to successive sets of data samples.

Antenna Patterns

Stable wavenumber power spectra (antenna patterns) are shown
computed for an 8 element antenna usirg both averaging methods.
In the first example a signal incident at 5 degrees from broad-
side with a SNR of 10 dB. (per antenna eltment) is shown detected
in slide 2 using averaged filter weights. And in slide 3 the
same signal is detected by MESA using ý,verageC covariance :ratrix
elements. Side peak levels are substantialiy reduced and whit-
ened with use of both averaging methods.

Two signals, separated 5 and 6 degrees, with a SNP oii
10 dB each signal (each antenna e-lemeint) ara resolved using both
averaging methods for the maximum number of filter weights per-
mitted (N=7). The two signals, which a'e :-eparrted 5 degrees,
are observed resolved in slide 4 using f0 iter weights averaged
10 times. And in slide 5, two signals which are separated 6
degrees are shown resolved with use of oovariance matrix aver-
aged 10 times. Both averaging methods of Coctively staol,.ze

eeteMA atterns, while permitting excellenteven the highest order MS ,o ,teno C

resolution and clutter suppress ion.
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Autocorrelation
The autocorrelation function r(t) , as noted in slide 6,

may be defined by the Fourier transform of the power spectrum

P(w). And the power spectrum P(M) may be derived from a timedependent function x(t) using either the Fourier transform or
MESA as indicated in the second equation of slide 6.

However, the autocorrelation function may also be eval-
uated using the prediction error transform by following the deri-
vation outlined in slide 6. The prediction error is expressed
as a linear function of thb appropriately sampled power spectra
density P(w). The prediction error ea, is transformed to the I
time domain using the Fourier transform as indicated in slide 6.
By transforming the prediction error to the time domain, the
autocorrelation function r(t) becomes inversly proportional to
the prediction error transform as noted. For demonstration pur-
poses the autocorrelation function is evaluated with both the
FFT and the prediction error transform. T1'ý power spectral den-
sity P(w), which is required by both methods, is evaluated only
with the FFT.

As an example, a multipath type signal is displayed in
slide 7. The signal consists of two gated sinusoids, one delayed
by one pulse width and shifted in phase by 180 degrees. The
transfer function, which is shown in the middle of slide 7, con-tains the anticipated modulation. In all computations the sig-
nal is treated as a complex function, although only the real
part is displayed in slide 7. The autocorrelation function,
shown in the lower section of slide 7, is evaluated with use of'the FFT.

In slide 8 the autocorrelation function is computed for
reduced bandwidths in order to illustrate the advantage of using
the prediction error transfoxm. The bandwidth is reduced by
clipping the transfer function at both ends of the spectrum as
desired. The upper plot of slide 8 depicts the conventional
autocorrelation function (using the FFT) computed at only 10% of
the original bandwidth. Peaks of the autocorrelation function
are not resolved. However, in the middle plot the autocoi:rela-
tion function computed using the prediction error transform (and
only 10% bandwidth), contains the usual number of anticipated
peaks. Even with the bandwidth reduced to only 5% of the total
bandwidth, all 3 peaks of the autocorrelation function are pre-
sent with use of the prediction error transform. Distortion
effects have become noticable at the 5% bandwidth level indicat-
ing the limitations of the prediction error transform.
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Signal Detection

The possibility of detecting signals by increasing the
SNR with MESA was observed previously in the MESA antenna pat-
terns shown in slides 2 and 3. In yet another demonstration of
the whitening capability of MESA, radar clutter is simulated as
shown in slide 9 where random phasýed clutter bands have power
levels typical of ground, rain, and interference clutter. Such
a clutter model has been used previously by Sawyers [3] in his
demonstration of adaptive filtering. A signal having a 0 dB.
SNR is located between the clutter at the frequency ratio of
.375 as denoted by the arrow in slide 9. The signal is detec-
ted as shown in slide 10, by applying MESA to several scts of
32 data samples and using 24 filter weights. The strong clutter
bands are very effectively whitened by MESA such that the larg-
est background peak in slide 10 is about 10 dB. below the signal
peak level. Similar results may be obtained for any signal lo-
cation. For example in slide 11 a signal, located at the center
of the interference clutter (.65) , is equally well detected a-
gain with MESA applied to consecutive sets of 32 data samples
using 26 filter weights. In both slides 10 and 11 the MESA
filter weights are averaged over 30 consecutive sets of 32 data
samples. While considerable averaging is used to achieve theI
results indicated in slides 10 and 11, less averaging of fewer
filter weights may also achieve satisfactory signal detection,
but with less resolution capability.

It is difficult to imagine that results comparable to
those shown in slides 10 and 11 could be achieved with any con-

ventional Fourier signal detection method.
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THE MAXIMUM ENTROPY METHOD APPLIED TO RADAR

ADAPTIVE DOPPLER FILTERING

J. H. SAWYERS

Hughes Aircraft Company
Ground Systems Division

Fullerton, California

Abstract

The maximum entropy method of Burg is well known as a means of estimating
high resolution power spectra from short time series data. In this paper, the Burg
method is employed in the calculation of adaptiva doppler filter coefficients for a
pulse doppler radar operating in a nonstationary clutter environment. It is demon-
strated by simulation that the adaptive doppler filters converge rapidly and accurately
in severe models of clutter and thermal noise.

Introduction

High speed digital hardware technology has progressed to the stage of development
where the implementation of many sophisticated radar signal processing techniques
here-to-fore impractically difficult has become feasible. One area of signal process-
ing that is receiving increased consideration is adaptive doppler filtering which is
the subject of this paper.

Modern pulse doppler radar systems are required to operate in nonstationary
clutter enviromnents comprising land, weather, sea, chaff and other interference
all of which can limit the ability of the radar to detect and track targets if the doppler
filters are not matched to the clutter. The intent of this paper is to demonstrate the
performance of an adaptive doppler filter bank (ADFB) that employs the maximum
entropy method (MEM) of Burg [1] in deriving the filter coefficients in a nonstationary
clutter environment.

The maximum entropy method of power spectrum estimation is well known in
the field of geophysics, and in recent years has attracted attention in other scientific
fields including radar. The acceptance occurs because MEM yields higher resolution
power spectrum estimates from short time series data when compared to conventional
methods of power spectrum estimation f2] - [41. Implicit in conventional methods
is a window, either weighted or unweighted, that treats missing data as zero thereby
causing spectral sidelobes and a loss of resolution. On the other hand, the MEM
spectrum is noncommittal with regard to missing data but corresponds to the most
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random time series whose autocorrelation function agrees with the known or derived
values. Since adaptive filtering is related to power spectrum estimation, incorpo-
rating MEM into adaptive filter designs is appropriate.

The paper begins with a brief description of adaptive doppler filtering by a
pulse doppler radar. The next section outlines how the MEM is used to derive the
adaptive coefficients, for the finite-impulse-response (FIR) filters comprising the
ADFB. The results of a Monte-Carlo simulation of selected adaptive doppler filters
of the ADFB are giveh in the last section. The filters are suibjected to severe clutter
including land, rain, bandlimited interference, multiple narrowband point sources
and thermal (white) noise. It is demonstrated that MEM adaptive doppler filtering
is characterized by rapid convergence and overall excellent clutter rejection
properties.

Adaptive Doppler Filtering

The pulse doppler radar in the search mode transmits a pulse train at the pulse-
repetition-frequency (PRF) of 1/T pulses per second. The interpulse spacing, T, is
based on the maximum unambiguous range and doppler frequency requirements of
the particular radar. The unambiguous doppler frequency is bounded by ± 1/2T.
N pulses of the pulse train constitute a dwell, and after each dwell the radar antenna
is directed to a different beam position. At each beam position, the ADFB processes
the N doppler-shifted pulses received from each range resolution cell in the beam.
The block diagram of the ADFB and target detection logic that processes these
N pulses is shown in Figure 1.

In Figure 1, ,xk is the complex digitizea basceand signal vector of the N received
pulses in a dwell on the k-th scan of a. particular range resolution cell.tf The w k(n)'s
are the complex coefficient vectors ot individual doppler FIR filters in the ADFB
and are calculated by means of an adaptive algorithm using the MEM. The design
criterion for the individual doppler filters is to provide maximum signal-to-clutter-
plus-noise ratio. This dictates that the wk(n)'s be calculated by the following equation:

A-1wk(n) = Rk u(n). (1)

In (1), Rk is the inverse of the estimated correlation matrix of the clutter environ-
ment that existed on scan k, and u(n) is the steering vector that specifies the doppler
frequency f. at which the signal-to-clutter-plus-noise ratio (SCNR) is to be maximized.
u(n) is given by

F--jT(N-1)f T -JTT(N-3)f T jTT(N-1)fT
u(n)T = e , e , ... ,e (2)

"The matrix notation used is as follows: Lower case letters are scalars; underlined
lower case letters are vectors; and upper case letters are square matrices. The
symbols *, T and t denote compLex conjugate, transpose and complex conjugate
transpose, respectively.
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where the fn's iv uniformly distributed in the interval IfnI ! 1/2T. The method
of calculating ;F,1 is given in the next sention.

In the detection process, the magnitudes of the outputs from the N doppler filter-
detector combinations are calculated by tble following:I ' I

vk (n) I W (n) xk (3)A

The maximum Vk(n) is autmnatically selc.ted and compared to a predetermined
threshold setting that is based on false alar-m consideiations. If vk(n)max exceeds
the threshold, a target detection is declared at the corresponding doppler frequency fn,
and the dat. xk is inhibited in the adaptive algorithm from contributing to the update
of .

The MEM Adaptive FIR ri).ter [5]

A- 1In radar adaptive doppler filter:.ng, it is necessary to calculate and update B1
periodically in order to accouni for changinr clutter conditions. The computational
procedure used by the MEM adaptive filter algorithm in Figure 1 to accomplish this
is as follows:

The last coefficients of each 1--th order prediction Ailter, ",f (k), A = t,
L, where L ! N/2, is calculated fLmin xk and stored. T",e procedture for calculating
the a, (k)'s from the .ks is given elsewhere [6.7). After a sele,.tcd number of
scans:,k = m, ... , n, the average of the a (k)'s are 2all-ulated by

PA
n

a n-m+ a (k) (4)
n-m+1ki.

for I= 1,... , L. Next, the L-th order prediction filter coefficients, L~is, are
calculated from the a2 , Is by means of the recuraion

:2,i a2li a, l,-

•--i

Rk is then calculated from the aL,iT s by a simple algorithm that results from choosing
SL N/2. The elements, zi,j, of the upper half of the matrix PqL •k1, where PL
is the average of ihe L-th order prediction error powers [11, are calculated by

Forii ..... ,N/2andj =i, .... , L+I

zjj aL, i-1 aL,j-1 + zi-1,j-1 (6a)•'i jhr aL,

whereL, 0=1 and zi,O0 z0o, =0.

Fori =2,...., N/2 andj = L+2.... , i L

z.~ =Zi~~_ (6b)

291

-5. . . . . .. . . .. .°.-. 4,.2"- "•''

- lk

A-, e---A,



For i = 1, . , N/2-1 andj = i. , N/2

-- z.*. (6c)

For i 1. .... , N/2 and j = i + L+ 1, .... , N

Z.i, j= 0 (6d)

Combining (6), (2) and (1) yields the dcsirec6 wk(n)ts.

Performance Analysis of the MEM ADFB

For examples showing the performance of the MEM ADFB, we choose N S2 and
1, = 15. The performance is evaluated by Monte-Carlo simulation of radar returns
from three clutter environments. The power density spectrum of the first, illus-
trated in Figure 2a, consists of land, rain, band-limited interference and thermal
noise. The second, illustrated in Figure 6a, consists of five narrowband point
sources, doppler offset land clutter and thermal noise. The third is thermal noise
only.

The power density spectrums obtained from the Yule-Walker (YW) equations [3]
using the first L = 15 lags of the exact autocorrelation functions obtained from the
spectrums of Figures 2a and 6a are given in Figures 2b and 6b, respectively.

The sinmulated time series representing the radar return from the clutter environ-
ment is generated by taking the discrete Fourier transform of a random phase line
voltage spectrum corresponding to those of Fiigures 2a and 6a. The phase is assumed
to be- independently distributed from line-to-line and dwell-to-dwell. Added thermal
noise is obtained from a Gaussian random number generator. The clutter is assumed
stationary over the period of adaptation in regard to the use of equation (4).

The optimum response functions and corresponding SCNR's for selected filters
of the ADFB, obtained by means of a closed-formed solution from the spectrums of
Figures 2a and 6a, are given for reference in Figures 3a, 4a, 5a and 7a. Similarly,
the responses and corresponding SCNR's for the YW spectrums are given in
Figures 3b, 4b, 5b and 7b. The definition of SCNR is based on the assumption of
unity signal voltage and unity thermal noise power per pulse at the input to the ADFB.
It should be noted that the power density spectrums and the filter response functions
are periodic; one period is shown.

The simulated MEM power density spectrums obtained from one and two dwells
corresponding to the exact spectrums of Figures 2a and 6a are given in Figures 2c,
6c, 2d and 6d, respectively. The corresponding adaptive response functions and
SCNR's for selected filters of the ADFB are given in c and d of Figures 3, 4, 5 and 7.
The figures are arranged for easy comparison.



. . ... .....

BN
The thermal noise only filter response functions are given in Figure 8. Note

here that the convergence time is also fast as in the previous examples employing
strong clutter.

In comparing the results of the analysis as given in Figures 2 through 8, excellent
results are obtained after only one dwell of a particular range resolution cell, regard-
less of the clutter environment. However, in those cases where the main lobe of
the response function is close to strong clutter, for example Figure 4, possibly two
or more dwells are required to improve the SCNR by one dB or so. If the main lobe
of the adaptive doppler filter is entirely within heavy clutter, Figure 5 for example,
the target must be quite large in order to be detected.

While adaptation can occur on targets as well as clutter, thus potentially inhibiting
their detection, targets can be seen as they move from one resolution cell to the next.
In addition, target adaptation effects can be ameliorated by performing the averaging,
using (4), over a number of resolation cclls in deriving the adaptive filter coefficients.

Conclusions

This analysis has shown in somewhat of a limited manner the potential benefits
offered by MEM adaptive doppler filtering: rapid convergence in arbitrary clutter
environments and adaptive response functions that closely approach the optimum.
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Figure 2. (a) The power density spectrum of land clutter, rain, band-limited interference and
thermal noise. The clutter-to-noise ratio, CNR = 50.1 dB. (b) The YW spectrum using the
first 15 lags of the autocorrelation function derived from (a). (c) The simulated MEM
spectrum after one dwell. (d) The simulated MEM spectrum after two dwells

295



0 
-z

-0 +-0. .

S-0 - -- 40

W -4 0 -40 - .-4,44 W
0 0. .4 06 . .0__0 0. 04 06 08 10

cc1

fT fT

(C) (d)
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Figure 4. The Adaptive Doppler Filter Responses to the Spectrums of Figure 2. fnT 0.5625.
(a) The optimum closed-form response. SCNR = 11.9 dB. (b) The YW response. SCNR =
11.2 dB. (7, 1he MEM response after one dwell. SCNR 9.4 dB. (d) The MEM re3ponse after
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